Unknown

Dataset Information

0

36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner.


ABSTRACT:

Background

Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW.

Methods

Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels.

Results

After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p???0.03) and increased with 36 h fasting in NBW subjects only (p???0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p???0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p?=?0.04) and decreased more than threefold in both groups after 36 h fasting (p???0.0001).

Conclusions

This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.

SUBMITTER: Hjort L 

PROVIDER: S-EPMC5399392 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

36 h fasting of young men influences adipose tissue DNA methylation of <i>LEP</i> and <i>ADIPOQ</i> in a birth weight-dependent manner.

Hjort Line L   Jørgensen Sine W SW   Gillberg Linn L   Hall Elin E   Brøns Charlotte C   Frystyk Jan J   Vaag Allan A AA   Ling Charlotte C  

Clinical epigenetics 20170421


<h4>Background</h4>Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (<i>LEP</i>) and adiponectin (<i>ADIPOQ</i>) DNA methylation and gene expression in subcu  ...[more]

Similar Datasets

| S-EPMC6796584 | biostudies-literature
| S-EPMC6520881 | biostudies-literature
2014-01-01 | GSE40798 | GEO
2014-01-01 | E-GEOD-40798 | biostudies-arrayexpress
| S-EPMC10409833 | biostudies-literature
| S-EPMC5860742 | biostudies-literature
| S-EPMC10656912 | biostudies-literature
| S-EPMC2786200 | biostudies-literature
| S-EPMC10237157 | biostudies-literature
| S-EPMC10849320 | biostudies-literature