Unknown

Dataset Information

0

Highly specific C-C bond cleavage induced FRET fluorescence for in vivo biological nitric oxide imaging.


ABSTRACT: A novel Förster resonance energy transfer (FRET) fluorescence "off-on" system based on the highly specific, sensitive and effective C-C bond cleavage of certain dihydropyridine derivatives was reported for real-time quantitative imaging of nitric oxide (NO). 1,4-Dihydropyridine was synthesized as a novel linker which could connect customized fluorophores and their corresponding quenchers. The specific and quantitative response to NO is confirmed using fluorescence spectrometry with the classical example of fluorescein isothiocyanate (FITC) and [4'-(N,N'-dimethylamino)phenylazo] benzoyl (DABCYL). The fluorescence intensity increased linearly with the increase in the amount of NO. Cells incubated with an exogenous NO donor emitted fluorescence as expected. A high fluorescence intensity was detected in macrophages which generate NO when incubated with lipopolysaccharide (LPS). The in vivo imaging shows about an 8-fold contrast between Freund's adjuvant stimulated feet and normal feet in mice after intravenous injection, which was the first example of in vivo semiquantitative fluorescence imaging of NO in mammals.

SUBMITTER: Li H 

PROVIDER: S-EPMC5407267 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highly specific C-C bond cleavage induced FRET fluorescence for <i>in vivo</i> biological nitric oxide imaging.

Li Hua H   Zhang Deliang D   Gao Mengna M   Huang Lumei L   Tang Longguang L   Li Zijing Z   Chen Xiaoyuan X   Zhang Xianzhong X  

Chemical science 20161130 3


A novel Förster resonance energy transfer (FRET) fluorescence "off-on" system based on the highly specific, sensitive and effective C-C bond cleavage of certain dihydropyridine derivatives was reported for real-time quantitative imaging of nitric oxide (NO). 1,4-Dihydropyridine was synthesized as a novel linker which could connect customized fluorophores and their corresponding quenchers. The specific and quantitative response to NO is confirmed using fluorescence spectrometry with the classical  ...[more]

Similar Datasets

2024-04-16 | GSE242887 | GEO
| S-EPMC7391786 | biostudies-literature
2024-04-21 | GSE242886 | GEO
2024-04-21 | GSE242814 | GEO
| S-EPMC7781204 | biostudies-literature
| PRJNA1015226 | ENA
| S-EPMC4210026 | biostudies-literature
| S-EPMC5837649 | biostudies-literature
| S-EPMC3872128 | biostudies-literature
| S-EPMC5875019 | biostudies-literature