Unknown

Dataset Information

0

The structural basis of a high affinity ATP binding ? subunit from a bacterial ATP synthase.


ABSTRACT: The ? subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ? subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ? subunit from bacterial ATP synthases.

SUBMITTER: Krah A 

PROVIDER: S-EPMC5436830 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase.

Krah Alexander A   Kato-Yamada Yasuyuki Y   Takada Shoji S  

PloS one 20170518 5


The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double muta  ...[more]

Similar Datasets

| S-EPMC6953521 | biostudies-literature
| S-EPMC2814204 | biostudies-literature
| S-EPMC3616739 | biostudies-literature
| S-EPMC7468127 | biostudies-literature
| S-EPMC3089524 | biostudies-literature
| S-EPMC5550021 | biostudies-literature
| S-EPMC2930565 | biostudies-literature