Project description:Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth.
Project description:Organization of intracellular content is affected by multiple simultaneous processes, including diffusion in a viscoelastic and structured environment, intracellular mechanical work and vibrations. The combined effects of these processes on intracellular organization are complex and remain poorly understood. Here, we studied the organization and dynamics of a free Ca++ probe as a small and mobile tracer in live T cells. Ca++, highlighted by Fluo-4, is localized in intracellular organelles. Inhibiting intracellular mechanical work by myosin II through blebbistatin treatment increased cellular dis-homogeneity of Ca++-rich features in length scale < 1.1 μm. We detected a similar effect in cells imaged by label-free bright-field (BF) microscopy, in mitochondria-highlighted cells and in ATP-depleted cells. Blebbistatin treatment also reduced the dynamics of the Ca++-rich features and generated prominent negative temporal correlations in their signals. Following Guggenberger et al. and numerical simulations, we suggest that diffusion in the viscoelastic and confined medium of intracellular organelles may promote spatial dis-homogeneity and stability of their content. This may be revealed only after inhibiting intracellular mechanical work and related cell vibrations. Our described mechanisms may allow the cell to control its organization via balancing its viscoelasticity and mechanical activity, with implications to cell physiology in health and disease.
Project description:Molecular chaperones often work collaboratively with the ubiquitylation-proteasome system (UPS) to facilitate the degradation of misfolded proteins, which typically safeguards cellular differentiation and protects cells from stress. In this study, however, we report that the Hsp70/Hsp90 chaperone machinery and an F-box protein, MEC-15, have opposing effects on neuronal differentiation, and that the chaperones negatively regulate neuronal morphogenesis and functions. Using the touch receptor neurons (TRNs) of Caenorhabditis elegans, we find that mec-15(-) mutants display defects in microtubule formation, neurite growth, synaptic development and neuronal functions, and that these defects can be rescued by the loss of Hsp70/Hsp90 chaperones and co-chaperones. MEC-15 probably functions in a Skp-, Cullin- and F-box- containing complex to degrade DLK-1, which is an Hsp90 client protein stabilized by the chaperones. The abundance of DLK-1, and likely other Hsp90 substrates, is fine-tuned by the antagonism between MEC-15 and the chaperones; this antagonism regulates TRN development, as well as synaptic functions of GABAergic motor neurons. Therefore, a balance between the UPS and the chaperones tightly controls neuronal differentiation.
Project description:Proper microtubule polarity underlies overall neuronal polarity, but mechanisms for maintaining microtubule polarity are not well understood. Previous live imaging in Drosophila dendritic arborization neurons showed that while microtubules are uniformly plus-end out in axons, dendrites possess uniformly minus-end-out microtubules [1]. Thus, maintaining uniform microtubule polarity in dendrites requires that growing microtubule plus ends entering branch points be actively directed toward the cell body. A model was proposed in which EB1 tracks the plus ends of microtubules growing into a branch and an associated kinesin-2 motor walks along a static microtubule to steer the plus end toward the cell body. However, the fast plus-end binding dynamics of EB1 [2-5] appear to be at odds with this proposed mechanical function. To test this model in vitro, we reconstituted the system by artificially dimerizing EB1 to kinesin, growing microtubules from immobilized seeds, and imaging encounters between growing microtubule plus ends and static microtubules. Consistent with in vivo observations, the EB1-kinesin complex actively steered growing microtubules. Thus, EB1 kinetics and mechanics are sufficient to bend microtubules for several seconds. Other kinesins also demonstrated this activity, suggesting this is a general mechanism for organizing and maintaining proper microtubule polarity in cells.
Project description:It is now evident that Galpha(s) traffics into cytosol following G protein-coupled receptor activation, and alpha subunits of some heterotrimeric G-proteins, including Galpha(s) bind to tubulin in vitro. Nevertheless, many features of G-protein-microtubule interaction and possible intracellular effects of G protein alpha subunits remain unclear. In this study, several biochemical approaches demonstrated that activated Galpha(s) directly bound to tubulin and cellular microtubules, and fluorescence microscopy showed that cholera toxin-activated Galpha(s) colocalized with microtubules. The activated, GTP-bound, Galpha(s) mimicked tubulin in serving as a GTPase activator for beta-tubulin. As a result, activated Galpha(s) made microtubules more dynamic, both in vitro and in cells, decreasing the pool of insoluble microtubules without changing total cellular tubulin content. The amount of acetylated tubulin (an indicator of microtubule stability) was reduced in the presence of Galpha(s) activated by mutation. Previous studies showed that cholera toxin and cAMP analogs may stimulate neurite outgrowth in PC12 cells. However, in this study, overexpression of a constitutively activated Galpha(s) or activation of Galpha(s) with cholera toxin in protein kinase A-deficient PC12 cells promoted neurite outgrowth in a cAMP-independent manner. Thus, it is suggested that activated Galpha(s) acts as an intracellular messenger to regulate directly microtubule dynamics and promote neurite outgrowth. These data serve to link G-protein signaling with modulation of the cytoskeleton and cell morphology.
Project description:Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.
Project description:Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.
Project description:Transglutaminase 2 (TG2) is a ubiquitous mammalian enzyme that is implicated in a variety of physiological processes and human diseases. Normally, extracellular TG2 is catalytically dormant due to formation of an allosteric disulphide bond between Cys370 and 371 of the enzyme. In this protocol, we describe a method to reduce this disulphide bond in living mice and to monitor the resulting in vivo TG2 activity. Briefly, exogenous thioredoxin-1 protein (TRX) is prepared and administered as a specific, physiologically relevant reductant of the Cys370-371 disulphide along with the small molecule 5-biotinamidopentylamine (5-BP) as a TG2 activity probe. Tissue cryosections are then analyzed by immunohistochemistry to ascertain the extent of 5-BP incorporation, which serves as a record of the redox state of TG2 in vivo. This protocol focuses on the modulation and measurement of TG2 in the small intestine, but we encourage investigators to evaluate it in their organ(s) of interest.
Project description:GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.