Unknown

Dataset Information

0

Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo.


ABSTRACT: TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of ?1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells. The resulting TRAIL-Trimer not only retains similar bioactivity and receptor binding kinetics as native TRAIL in vitro which are 4-5 orders of magnitude superior to that of dimeric TRAIL-Fc, but also manifests more favorable pharmacokinetic and antitumor pharmacodynamic profiles in vivo than that of native TRAIL. Taken together, this work provides direct evidence for the in vivo antitumor efficacy of TRAIL being proportional to systemic drug exposure and suggests that the previous clinical failures may have been due to rapid systemic clearance of native TRAIL and poor apoptosis-inducing potency of dimeric agonist mAbs despite their long serum half-lives.

SUBMITTER: Liu H 

PROVIDER: S-EPMC5566391 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo.

Liu Haipeng H   Su Danmei D   Zhang Jinlong J   Ge Shuaishuai S   Li Youwei Y   Wang Fei F   Gravel Michel M   Roulston Anne A   Song Qin Q   Xu Wei W   Liang Joshua G JG   Shore Gordon G   Wang Xiaodong X   Liang Peng P  

Scientific reports 20170821 1


TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide  ...[more]

Similar Datasets

| S-EPMC4597189 | biostudies-literature
| S-EPMC5505058 | biostudies-literature
| S-EPMC4058226 | biostudies-literature
| S-EPMC7321154 | biostudies-literature
| S-EPMC5553283 | biostudies-literature
| S-EPMC5320504 | biostudies-literature
| S-EPMC4214715 | biostudies-literature
| S-EPMC4211912 | biostudies-literature
| S-EPMC4623419 | biostudies-literature
| S-EPMC6966507 | biostudies-literature