Project description:The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure-property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry. The structure of the polymer has been unambiguously confirmed by microcrystal electron diffraction that together with charge transport studies and theoretical calculations show how the π-stacked chains of the polymer generate optimal channels for charge transport.
Project description:Dynamic covalent chemistry is used in many applications that require both the stability of covalent bonds and the possibility to exchange building blocks. Here we present azines as a dynamic covalent functional group that combines the best characteristics of imines and acylhydrazones. We show that azines are stable in the presence of water and that dynamic combinatorial libraries of azines and aldehydes equilibrate in less than an hour.
Project description:In aqueous media, liquid crystalline droplets typically form spherical shapes in order to minimize surface energy. Recently, non-spherical geometry has been reported using molecular self-assembly of surfactant-stabilized liquid crystalline oligomers, resulting in branched and randomly oriented filamentous networks. In this study, we report a polymerization of liquid crystalline polymeric fibers within a micro-mold. When liquid crystal oligomers are polymerized in freely suspended aqueous media, curvilinear and randomly networked filaments are obtained. When reactive liquid crystalline monomers are oligomerized in a micro-channel, however, highly aligned linear fibers are polymerized. Within a top-down microfabricated mold, a bottom-up molecular assembly was successfully achieved in a controlled manner by micro-confinement, suggesting a unique opportunity for the programming architecture of materials via a hybrid approach.
Project description:Herein we demonstrate that dynamic covalent chemistry can be used to induce reversible morphological transitions in block copolymer nano-objects and hydrogels. Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer nano-objects (vesicles or worms) were prepared via polymerization-induced self-assembly. Addition of 4-carboxyphenylboronic acid (CPBA) leads to the formation of phenylboronate ester bonds with the 1,2-diol pendent groups on the hydrophilic PGMA stabilizer chains; such binding causes a subtle reduction in the packing parameter, which in turn induces either vesicle-to-worm or worm-to-sphere transitions. Moreover, CPBA binding is pH-dependent, so reversible transitions can be achieved by switching the solution pH, with relatively high copolymer concentrations leading to associated (de)gelation. This distinguishes these new physical hydrogels from the covalently cross-linked gels prepared using dynamic covalent chemistry reported in the literature.
Project description:A novel dynamic covalent gel strategy is reported to immobilize an asymmetric catalyst within the channels of a microfluidic flow reactor. A layer of a catalytically active Mn-salen dynamic covalent imine gel matrix was coated onto a functionalized capillary. Mn-salen active moiety was incorporated into dynamic covalent imine gel matrix via the reaction of a chiral Mn-salen dialdehyde unit with a tetraamine linker. The catalytic activity of the capillary reactor has been demonstrated in enantioselective kinetic resolution of secondary alcohols.
Project description:As the preliminary synthetic analogs of living cells, protocells with life-like features serve as a versatile platform to explore the origin of life. Although protocells constructed from multiple components have been developed, the transition of primitive cellular compartments toward structural complexity and advanced function remains a scientific challenge. Herein, a programmable pathway is established to exploit a simple chemistry to construct structural transition of protocell models from emulsion droplets, nanocapsules to molecularly crowded droplets. The transitional process toward distinct cell-like compartments is driven by interfacial self-assembly of simple components and regulated by physicochemical cues (e.g., mechanical force, solvent evaporation, acid/base equilibrium) triggered dynamic covalent chemistry. These protocell models are further studied by comparing their compartmentalization behavior, sequestration efficiency, and the ability to enrich biomolecules (e.g., enzyme and substrate) toward catalytic reaction or biological activity within the compartments. The results showcase physiochemical cues-driven programmable transition of life-like compartments toward functionalization, and offer a new step toward the design of living soft materials.
Project description:Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. In methanol solution, all possible Michael adducts were obtained in similar amounts. Addition of vesicles to the dynamic covalent library led to the formation of a single major product. The equilibrium constants for formation of the Michael adducts are similar for all of the thiols used in this experiment, and the effect of the vesicles on the composition of the library is attributed to the differential partitioning of the library members between the lipid bilayer and the aqueous solution. The results provide a quantitative approach for exploiting dynamic covalent chemistry within lipid bilayers.
Project description:Cyclic oligochalcogenides (COCs) are emerging as promising systems to penetrate cells. Clearly better than and different to the reported diselenolanes and epidithiodiketopiperazines, we introduce the benzopolysulfanes (BPS), which show efficient delivery, insensitivity to inhibitors of endocytosis, and compatibility with substrates as large as proteins. This high activity coincides with high reactivity, selectively toward thiols, exceeding exchange rates of disulfides under tension. The result is a dynamic-covalent network of extreme sulfur species, including cyclic oligomers, from dimers to heptamers, with up to nineteen sulfurs in the ring. Selection from this unfolding adaptive network then yields the reactivities and selectivities needed to access new uptake pathways. Contrary to other COCs, BPS show high retention on thiol affinity columns. The identification of new modes of cell penetration is important because they promise new solutions to challenges in delivery and beyond.
Project description:Seeking new photoresponsive materials with high energy conversion efficiency, good mechanical properties, as well as well-defined photoactuation mechanisms is of paramount significance. To address these challenges, we first introduced crystalline covalent organic frameworks (COFs) into the photoactuator field and created a facile fabrication strategy to directly install photoresponsive functional groups (i.e., acylhydrazone) on the skeletons of COFs. Herein, an approach to use polyethylene glycol (PEG) cross-linked dimers as the building blocks of the COF-42 platform was developed and afforded a series of uniform and freestanding membranes (PEG-COF-42) with outstanding mechanical properties (e.g., high flexibility and mechanical strength). Notably, these membranes possessed a fast mechanical response (e.g., bending) to UV light and good reversibility upon blue light or heating. After an in-depth investigation of the photoactuation mechanism via various techniques, we proposed a mechanism for the photoresponsive performance of PEG-COF-42: configurational change of acylhydrazone (i.e., E ↔ Z isomerization) accompanied by an excited-state intramolecular proton transfer (ESIPT) process intramolecularly transferring hydrogens from hydrogen donors (N-H) to hydrogen acceptors (oxygen in PEG). Moreover, attributed to the PEG moieties, PEG-COF-42 also demonstrated a vapor-responsive performance. This study not only broadens the application scopes of COFs but also provides new opportunities for the construction of multi-stimuli-responsive materials.
Project description:Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.