Unknown

Dataset Information

0

Yeast telomerase appears to frequently copy the entire template in vivo.


ABSTRACT: Telomeres derived from the same formation event in wild type strains of Saccharomyces cerevisiae possess the same, precise TG(1-3) sequence for the most internal approximately 100 bp of the 250-350 bp TG(1-3) repeats. The conservation of this internal domain is thought to reflect the fact that telomere lengthening and shortening, and thus alteration of the precise TG(1-3) sequence, is confined to the terminal region of the telomere. The internal domains of telomeres from yku70 and tel1 mutants, whose entire telomeres are only approximately 100 bp, were examined by analyzing 5.1 kb of cloned TG(1-3) sequences from telomeres formed during transformation of wild type, yku70 and tel1 cells. The internal domains were 97-137 bp in wild type cells, 27-36 bp in yku70 cells and 7-9 bp in tel1 cells. These data suggest that the majority of the tel1 cell TG(1-3) repeats may be resynthesized during shortening and lengthening reactions while a portion of the yku70 cell telomeres are protected. TG(1-3) sequences are synthesized by telomerase repeatedly copying an internal RNA template, which introduces a sequence bias into TG(1-3) repeats. Analysis of in vivo-derived telomeres revealed that of the many possible high affinity binding sites for the telomere protein Rap1p in TG(1-3) repeats, only those consistent with telomere hybridization to the ACACAC in the 3'-region of the telomerase RNA template followed by copying of most of the template were present. Copies of the telomerase RNA template made up 40-60% of the TG(1-3) sequences from each strain and could be found in long, tandem repeats. The data suggest that in vivo yeast telomerase frequently allows telomeres to hybridize to the 3'-region of RNA template and copy most of it prior to dissociation, or that in vivo telomere processing events result in the production of TG(1-3) sequences that mimic this process.

SUBMITTER: Ray A 

PROVIDER: S-EPMC55706 | biostudies-literature | 2001 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Yeast telomerase appears to frequently copy the entire template in vivo.

Ray A A   Runge K W KW  

Nucleic acids research 20010601 11


Telomeres derived from the same formation event in wild type strains of Saccharomyces cerevisiae possess the same, precise TG(1-3) sequence for the most internal approximately 100 bp of the 250-350 bp TG(1-3) repeats. The conservation of this internal domain is thought to reflect the fact that telomere lengthening and shortening, and thus alteration of the precise TG(1-3) sequence, is confined to the terminal region of the telomere. The internal domains of telomeres from yku70 and tel1 mutants,  ...[more]

Similar Datasets

| S-EPMC2527122 | biostudies-literature
| S-EPMC4705647 | biostudies-literature
| S-EPMC4074303 | biostudies-literature
| S-EPMC4654688 | biostudies-literature
| S-EPMC3252576 | biostudies-literature
| S-EPMC1084187 | biostudies-literature
| S-EPMC4800423 | biostudies-literature
| S-EPMC5905299 | biostudies-literature
| S-EPMC104358 | biostudies-literature
| S-EPMC1174988 | biostudies-literature