Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury.
Ontology highlight
ABSTRACT: This study was designed to investigate whether functional and molecular MRI techniques are sensitive biomarkers for assessment of neuroinflammation and drug efficacy after traumatic brain injury (TBI) in rats. We subjected rats to a controlled cortical impact model and used behavioral tests, histology, and immunofluorescence to assess whether flavonoid pinocembrin provides cerebral protection and improves functional recovery. Most importantly, we used multiple noninvasive structural, functional, and molecular MRI techniques to examine whether the pinocembrin-related neuroprotection and attenuation of neuroinflammation can be detected in vivo. Significant increases in cerebral blood flow (CBF) and amide proton transfer-weighted (APTw) MRI signals were observed in the perilesional areas in untreated TBI rats at 3days and could be attributed to increased glial response. In addition, increased apparent diffusion coefficient and decreased magnetization transfer ratio signals in untreated TBI rats over time were likely due to edema. Post-treatment with pinocembrin decreased microglial/macrophage activation at 3days, consistent with the recovery of CBF and APTw MRI signals in regions of secondary injury. These findings suggest that pinocembrin provides cerebral protection for TBI and that multiple MRI signals, CBF and APTw in particular, are sensitive biomarkers for identification and assessment of neuroinflammation and drug efficacy in the TBI model.
SUBMITTER: Wang W
PROVIDER: S-EPMC5572149 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA