Unknown

Dataset Information

0

Investigating the Suitability of Carbon Nanotube Reinforced Polymer in Transcatheter Valve Applications.


ABSTRACT: The current delivery size of transcatheter aortic valves, limited by the thickness of their pericardial leaflets, correlates with a high prevalence of major vascular complications. Polyurethane valves can be developed to a fraction of the thickness of pericardial valves through the addition of carbon nanotubes to reinforce their leaflets. This study investigates the suitability of a novel carbon nanotube reinforced leaflet to reduce the delivery profile of transcatheter aortic valves. Carbon nanotube polyurethane composites were developed with thicknesses of 50 ?m and their mechanical properties were determined in relation to various environmental effects. The composites demonstrated improvements to the material stiffness, particularly at increasing strain rates compared to the neat polymer. However, increasing nanotube concentrations significantly decreased the fatigue life of the composites. Key findings highlighted a potential for carbon nanotube reinforcement in valve replacement which experience very high strain rates during the cardiac cycle. Further testing is needed to achieve a strong nanotube-matrix interface which will prolong the cyclic fatigue life and further strengthen tensile properties. Testing on the durability and haemocompatibility of these composite heart valves are ongoing.

SUBMITTER: Rozeik MM 

PROVIDER: S-EPMC5573758 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigating the Suitability of Carbon Nanotube Reinforced Polymer in Transcatheter Valve Applications.

Rozeik Monica M MM   Wheatley David J DJ   Gourlay Terence T  

Cardiovascular engineering and technology 20170616 3


The current delivery size of transcatheter aortic valves, limited by the thickness of their pericardial leaflets, correlates with a high prevalence of major vascular complications. Polyurethane valves can be developed to a fraction of the thickness of pericardial valves through the addition of carbon nanotubes to reinforce their leaflets. This study investigates the suitability of a novel carbon nanotube reinforced leaflet to reduce the delivery profile of transcatheter aortic valves. Carbon nan  ...[more]

Similar Datasets

| S-EPMC7412307 | biostudies-literature
| S-EPMC6281659 | biostudies-literature
| S-EPMC7077650 | biostudies-literature
| S-EPMC7656311 | biostudies-literature
| S-EPMC8471937 | biostudies-literature
| S-EPMC7433849 | biostudies-literature
| S-EPMC5568031 | biostudies-literature
| S-EPMC6934845 | biostudies-literature
| S-EPMC7370303 | biostudies-literature
| S-EPMC6475193 | biostudies-literature