<h4>Purpose</h4>In order to fully benefit from the improved signal-to-noise and contrast-to-noise ratios at 9.4T, the challenges of B1+ inhomogeneity and the long acquisition time of high-resolution 2D gradient-recalled echo (GRE) imaging were addressed.<h4>Theory and methods</h4>Flip angle homogenized excitations were achieved by parallel transmission (pTx) of 3-spoke pulses, designed by magnitude least-squares optimization in a slice-by-slice fashion; the acquisition time reduction was achieve ...[more]
Project description:PurposeSpin-echo functional MRI (SE-fMRI) has the potential to improve spatial specificity when compared with gradient-echo fMRI. However, high spatiotemporal resolution SE-fMRI with large slice-coverage is challenging as SE-fMRI requires a long echo time to generate blood oxygenation level-dependent (BOLD) contrast, leading to long repetition times. The aim of this work is to develop an acquisition method that enhances the slice-coverage of SE-fMRI at high spatiotemporal resolution.Theory and methodsAn acquisition scheme was developed entitled multisection excitation by simultaneous spin-echo interleaving (MESSI) with complex-encoded generalized slice dithered enhanced resolution (cgSlider). MESSI uses the dead-time during the long echo time by interleaving the excitation and readout of 2 slices to enable 2× slice-acceleration, while cgSlider uses the stable temporal background phase in SE-fMRI to encode/decode 2 adjacent slices simultaneously with a "phase-constrained" reconstruction method. The proposed cgSlider-MESSI was also combined with simultaneous multislice (SMS) to achieve further slice-acceleration. This combined approach was used to achieve 1.5-mm isotropic whole-brain SE-fMRI with a temporal resolution of 1.5 s and was evaluated using sensory stimulation and breath-hold tasks at 3T.ResultsCompared with conventional SE-SMS, cgSlider-MESSI-SMS provides 4-fold increase in slice-coverage for the same repetition time, with comparable temporal signal-to-noise ratio. Corresponding fMRI activation from cgSlider-MESSI-SMS for both fMRI tasks were consistent with those from conventional SE-SMS. Overall, cgSlider-MESSI-SMS achieved a 32× encoding-acceleration by combining Rinplane × MB × cgSlider × MESSI = 4 × 2 × 2 × 2.ConclusionHigh-quality, high-resolution whole-brain SE-fMRI was acquired at a short repetition time using cgSlider-MESSI-SMS. This method should be beneficial for high spatiotemporal resolution SE-fMRI studies requiring whole-brain coverage.
Project description:Parallel transmission (pTx) technology, despite its great potential to mitigate the transmit field inhomogeneity problem in magnetic resonance imaging at ultra-high field (UHF), suffers from a cumbersome calibration procedure, thereby making the approach problematic for routine use. The purpose of this work is to demonstrate on two different 7T systems respectively equipped with 8-transmit-channel RF coils from two different suppliers (Rapid-Biomed and Nova Medical), the benefit of so-called universal pulses (UP), optimized to produce uniform excitations in the brain in a population of adults and making unnecessary the calibration procedures mentioned above. Non-selective and slice-selective UPs were designed to return homogeneous excitation profiles throughout the brain simultaneously on a group of ten subjects, which then were subsequently tested on ten additional volunteers in magnetization prepared rapid gradient echo (MPRAGE) and multi-slice gradient echo (2D GRE) protocols. The results were additionally compared experimentally with the standard non-pTx circularly-polarized (CP) mode, and in simulation with subject-specific tailored excitations. For both pulse types and both coils, the UP mode returned a better signal and contrast homogeneity than the CP mode. Retrospective analysis of the flip angle (FA) suggests that the FA deviation from the nominal FA on average over a healthy adult population does not exceed 11% with the calibration-free parallel-transmit pulses whereas it goes beyond 25% with the CP mode. As a result the universal pulses designed in this work confirm their relevance in 3D and 2D protocols with commercially available equipment. Plug-and-play pTx implementations henceforth become accessible to exploit with more flexibility the potential of UHF for brain imaging.
Project description:Simultaneous multi-slice (SMS) imaging is a popular technique for increasing acquisition speed in echo-planar imaging (EPI) fMRI. However, SMS data are prone to motion sensitivity and slice leakage artefacts, which spread signal between simultaneously acquired slices. Relevant to motion sensitivity, artefacts from moving anatomic structures propagate along the phase-encoding (PE) direction. This is particularly relevant for eye movement. As signal from the eye is acquired along with signal from simultaneously excited slices during SMS, there is potential for signal to spread in-plane and between spatially remote slices. After identifying an artefact temporally coinciding with signal fluctuations in the eye and spatially distributed in correspondence with multiband slice acceleration and parallel imaging factors, we conducted a series of small experiments to investigate eye movement artefacts in SMS data and the contribution of PE direction to the invasiveness of these artefacts. Five healthy adult volunteers were scanned during a blinking task using a standard SMS-EPI protocol with posterior-to-anterior (P ≫ A), anterior-to-posterior (A ≫ P) or right-to-left (R ≫ L) PE direction. The intensity of signal fluctuations (artefact severity) was measured at expected artefact positions and control positions. We demonstrated a direct relationship between eye movements and artefact severity across expected artefact regions. Within-brain artefacts were apparent in P ≫ A- and A ≫ P-acquired data but not in R ≫ L data due to the shift in artefact positions. Further research into eye motion artefacts in SMS data is warranted but researchers should exercise caution with SMS protocols. We recommend rigorous piloting of SMS protocols and switching to R ≫ L/L ≫ R PE where feasible.
Project description:PurposeTo enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty.MethodsSMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit.ResultsWave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 s at effective MB factor 13, with maximum and average g-factor penalties of gmax = 1.34 and gavg = 1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax = 3.24 and gavg = 1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher.ConclusionCombination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR.
Project description:Compressed sensing (CS) may be useful for accelerating data acquisitions in high-resolution fMRI. However, due to the inherent slow temporal dynamics of the hemodynamic signals and concerns of potential statistical power loss, the CS approach for fMRI (CS-fMRI) has not been extensively investigated. To evaluate the utility of CS in fMRI application, we systematically investigated the properties of CS-fMRI using computer simulations and in vivo experiments of rat forepaw sensory and odor stimulations with gradient-recalled echo (GRE) and echo planar imaging (EPI) sequences. Various undersampling patterns along the phase-encoding direction were studied and k-t FOCUSS was used as the CS reconstruction algorithm, which exploits the temporal redundancy of images. Functional sensitivity, specificity, and time courses were compared between fully-sampled and CS-fMRI with reduction factors of 2 and 4. CS-fMRI with GRE, but not with EPI, improves the statistical sensitivity for activation detection over the fully sampled data when the ratio of the fMRI signal change to noise is low. CS improves the temporal resolution and reduces temporal noise correlations. While CS reduces the functional response amplitudes, the noise variance is also reduced to make the overall activation detection more sensitive. Consequently, CS is a valuable fMRI acceleration approach, especially for GRE fMRI studies.
Project description:PurposeTo design low peak and integrated power simultaneous multislice excitation radiofrequency pulses with transmit field inhomogeneity compensation in high field MRI.Theory and methodsThe "interleaved greedy and local optimization" algorithm for small-tip-angle spokes pulses is extended to design multiband (MB) spokes pulses that simultaneously excite multiple slices, with independent spokes weight optimization for each slice. The peak power of the pulses is controlled using a slice phase optimization technique. Simulations were performed at 7T to compare the peak power of optimized MB spokes pulses to unoptimized pulses, and to compare the proposed slice-independent spokes weight optimization to a joint approach. In vivo experiments were performed at 7T to validate the pulse's function and compare them to conventional MB pulses.ResultsSimulations showed that the peak power-minimized pulses had lower peak power than unregularized and integrated power-regularized pulses, and that the slice-independent spokes weight optimization consistently produced lower flip angle inhomogeneity and lower peak and integrated power pulses. In the brain imaging experiments, the MB spokes pulses showed significant improvement in excitation flip angle and subsequently signal homogeneity compared to conventional MB pulses.ConclusionThe proposed MB spokes pulses improve flip angle homogeneity in simultaneous multislice acquisitions at ultrahigh field, with minimal increase in integrated and peak radiofrequency power.
Project description:High isotropic resolution fMRI is challenging primarily due to long repetition times (TR) and insufficient SNR, especially at lower field strengths. Recently, Simultaneous Multi-Slice (SMS) imaging with blipped-CAIPI has substantially reduced scan time and improved SNR efficiency of fMRI. Similarly, super-resolution techniques utilizing sub- voxel spatial shifts in the slice direction have increased both resolution and SNR efficiency. Here we demonstrate the synergistic combination of SLIce Dithered Enhanced Resolution (SLIDER) and SMS for high-resolution, high-SNR whole brain fMRI in comparison to standard resolution fMRI data as well as high-resolution data. With SLIDER-SMS, high spatial frequency information is recovered (unaliased) even in absence of super-resolution deblurring algorithms. Additionally we find that BOLD CNR (as measured by t-value in a visual checkerboard paradigm) is improved by as much as 100% relative to traditionally acquired high- resolution data. Using this gain in CNR, we are able to obtain unprecedented nominally isotropic resolutions at 3T (0.66 mm) and 7T (0.45 mm).
Project description:PurposeTo describe a simultaneous multislice (SMS) ultrashort echo time (UTE) imaging method using radiofrequency phase encoded half-pulses in combination with power independent of number of slices (PINS) inversion recovery (IR) pulses to generate multiple-slice images with short T2 * contrasts in less than 3 min with close to an eightfold acceleration compared with a standard 2D approach.Theory and methodsRadiofrequency phase encoding is applied in an SMS (NSMS = 4) excitation scheme using "sinc" half-pulses. With the use of coil sensitivity encoding (SENSE) and controlled aliasing in parallel imaging (CAIPI) in combination with a gradient echo 2D spiral readout trajectory and IR PINS pulses for contrast enhancement a fast UTE sequence is developed. Images are obtained using a model-based reconstruction method. Sequence details and performance tests on phantoms as well as the heads of healthy volunteers at 3T are presented.ResultsAn SMS UTE sequence with an undersampling factor of 4 is developed using radiofrequency phase encoded half-pulses and PINS IR pulses which enables the acquisition of 8 slices at 0.862 mm2 resolution in less than 3-min scan time. UTE images of the head are obtained showing highlighted signal of cortical bone. Image quality and T2 contrast are comparable to the one obtained by corresponding single slice acquisitions with only minor deviations.ConclusionsThe method combining radiofrequency phase encoded SMS half-pulses and PINS IR pulses presents a suitable approach to SMS UTE imaging. The usage of coil sensitivity information and increased sampling density by means of interleaved slice group acquisitions allows to reduce the total scan time by a factor close to 8.
Project description:We investigate the spectral evolution in different metal phthalocyanine molecules on NbSe2 surface using scanning tunnelling microscopy (STM) as a function of the coupling with the substrate. For manganese phthalocyanine (MnPc), we demonstrate a smooth spectral crossover from Yu-Shiba-Rusinov (YSR) bound states to spin-flip excitations. This has not been observed previously and it is in contrast to simple theoretical expectations. We corroborate the experimental findings using numerical renormalization group calculations. Our results provide fundamental new insight on the behavior of atomic scale magnetic/SC hybrid systems, which is important, for example, for engineered topological superconductors and spin logic devices.
Project description:In swine models, there are well-established protocols for creating a closed-chest myocardial infarction (MI) as well as protocols for characterization of cardiac function with cardiac magnetic resonance (CMR). This methods manuscript outlines a novel technique in CMR data acquisition utilizing smart-signal gradient recalled echo (GRE)-based array sequences in a free-breathing swine heart failure model allowing for both high spatial and temporal resolution imaging. Nine male Yucatan mini swine weighing 48.7 ± 1.6 kg at 58.2 ± 3.1 weeks old underwent the outlined imaging protocol before and 1-month after undergoing closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion. The left ventricular ejection fraction (LVEF) at baseline was 59.3 ± 2.4% and decreased to 48.1 ± 3.7% 1-month post MI (P = 0.029). The average end-diastolic volume (EDV) at baseline was 55.2 ± 1.7 ml and increased to 74.2 ± 4.2 ml at 1-month post MI (P = 0.001). The resulting images from this novel technique and post-imaging analysis are presented and discussed. In a Yucatan swine model of heart failure via closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion, we found that CMR with GRE-based array sequences produced clinical-grade images with high spatial and temporal resolution in the free-breathing setting.