Unknown

Dataset Information

0

Balancing anti-inflammatory and anti-oxidant responses in murine bone marrow derived macrophages.


ABSTRACT:

Rationale

The underlying pathophysiology of bronchopulmonary dysplasia includes a macrophage-mediated host response orchestrated by anti-inflammatory peroxisome proliferator-activated receptor gamma (PPARγ) and anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf2). These have not yet been studied in combination. This study tested the hypothesis that combined inflammatory and oxidative stressors would interact and change PPARγ- and Nrf2-regulated gene expression and antioxidant capacity. Therefore, we investigated the effect of dual stimulation with lipopolysaccharide and hyperoxia in murine bone marrow-derived macrophages (BMDM).

Methods

Sub-confluent BMDM from wild-type C57BL/6J mice were treated with lipopolysaccharide (LPS) 1ug/mL for 2 hours followed by room air (21% oxygen) or hyperoxia (95% oxygen) for 24 hours. Taqman real time-polymerase chain reaction gene expression assays, total antioxidant capacity assays, and Luminex assays were performed.

Results

Supernatants of cultured BMDM contained significant antioxidant capacity. In room air, LPS treatment decreased expression of PPARγ and Nrf2, and increased expression of tumor necrosis factor-alpha and heme oxygenase-1; similar findings were observed under hyperoxic conditions. LPS treatment decreased cellular total antioxidant capacity in room air but not in hyperoxia. Increased expression of sulfiredoxin-1 in response to hyperoxia was not observed in LPS-treated cells. Dual stimulation with LPS treatment and exposure to hyperoxia did not have synergistic effects on gene expression. Cellular total antioxidant capacity was not changed by hyperoxia exposure.

Conclusions

Our hypothesis was supported and we demonstrate an interaction between inflammatory and oxidative stressors in a model system of bronchopulmonary dysplasia pathogenesis. The protective anti-oxidant effect of cell culture media may have protected the cells from the most deleterious effects of hyperoxia.

SUBMITTER: Nitkin CR 

PROVIDER: S-EPMC5590945 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2024-01-24 | GSE226432 | GEO
| S-EPMC6065162 | biostudies-literature
| S-EPMC5344453 | biostudies-literature
| S-EPMC7284309 | biostudies-literature
| S-EPMC3574850 | biostudies-other
| S-EPMC7842587 | biostudies-literature