Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices.
Ontology highlight
ABSTRACT: Glass is a desired material for many microfluidics applications. It is chemically resistant and has desirable characteristics for capillary electrophoresis. The process to make a glass chip, however, is lengthy and inconvenient, with the most difficult step often being the bonding of two planar glass substrates. Here we describe a new glass bonding technique, which requires only washing of the glass surfaces with a calcium solution and 1-2 h of bonding at 115 degrees C. We found calcium uniquely allows for this simple and efficient low-temperature bonding to occur, and none of the other cations we tried (e.g., Na (+), Mg (2+), Mn (3+)) resulted in satisfactory bonding. We determined this bond is able to withstand high applied field strengths of at least up to 4 kV x cm (-1). When intense pressure was applied to a fluid inlet, a circular portion of the coverslip beneath the well exploded outward but very little of the glass-glass interface debonded. In combination with the directed hydrofluoric acid etching of a glass substrate using a poly(dimethylsiloxane) (PDMS) etch guide, we were able to make glass chips with better than 90% yield within 6 h. This technique is compatible with inexpensive unpolished glass and is limited in resolution by the PDMS etch guide used and the intrinsic properties of isotropic etching.
SUBMITTER: Allen PB
PROVIDER: S-EPMC5598157 | biostudies-literature | 2008 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA