Project description:The development of atherosclerotic plaques is the result of a chronic inflammatory response coordinated by stromal and immune cellular components of the vascular wall. While endothelial cells and leukocytes are well-recognised mediators of inflammation in atherosclerosis, the role of smooth muscle cells (SMCs) remains incompletely understood. Here we aimed to address the role of canonical NF-κB signalling in SMCs in the development of atherosclerosis. We investigated the role of NF-κB signalling in SMCs in atherosclerosis by employing SMC-specific ablation of NEMO, an IKK complex subunit that is essential for canonical NF-κB activation, in ApoE-/- mice. We show that SMC-specific ablation of NEMO (NEMOSMCiKO) inhibited high fat diet induced atherosclerosis in ApoE-/- mice. NEMOSMCiKO/ApoE-/- mice developed less and smaller atherosclerotic plaques, which contained fewer macrophages, decreased numbers of apoptotic cells and smaller necrotic areas and showed reduced inflammation compared to the plaques of ApoE-/- mice. In addition, the plaques of NEMOSMCiKO/ApoE-/- mice showed higher expression of α-SMA and lower expression of the transcriptional factor KLF4 compared to those of ApoE-/- mice. Consistently, in vitro, NEMO-deficient SMCs exhibited reduced proliferation and migration, as well as decreased KLF4 expression and lower production of IL-6 and MCP-1 upon inflammatory stimulus (TNF or LPS) compared to NEMO-expressing SMCs. In conclusion, NEMO-dependent activation of NF-κB signalling in SMCs critically contributes to the pathogenesis of atherosclerosis by regulating SMC proliferation, migration and phenotype switching in response to inflammatory stimuli.
Project description:AimsVascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species derived from NADPH oxidases. However, it remains unclear whether a primary increase in superoxide production specifically in the endothelium alters the initiation or progression of atherosclerosis.Methods and resultsMice overexpressing Nox2 specifically in the endothelium (Nox2-Tg) were crossed with ApoE(-/-) mice to produce Nox2-Tg ApoE(-/-) mice and ApoE(-/-) littermates. Endothelial overexpression of Nox2 in ApoE(-/-) mice did not alter blood pressure, but significantly increased vascular superoxide production compared with ApoE(-/-) littermates, measured using both lucigenin chemiluminescence and 2-hydroxyethidium production (ApoE(-/-), 19.9 ± 6.3 vs. Nox2-Tg ApoE(-/-), 47.0 ± 7.0 nmol 2-hydroxyethidium/aorta, P< 0.05). Increased endothelial superoxide production increased endothelial levels of vascular cell adhesion protein 1 and enhanced macrophage recruitment in early lesions in the aortic roots of 9-week-old mice, indicating increased atherosclerotic plaque initiation. However, endothelial-specific Nox2 overexpression did not alter native or angiotensin II-driven atherosclerosis in either the aortic root or the descending aorta.ConclusionEndothelial-targeted Nox2 overexpression in ApoE(-/-) mice is sufficient to increase vascular superoxide production and increase macrophage recruitment possible via activation of endothelial cells. However, this initial increase in macrophage recruitment did not alter the progression of atherosclerosis. These results indicate that Nox-mediated reactive oxygen species signalling has important cell-specific and distinct temporal roles in the initiation and progression of atherosclerosis.
Project description:Adropin, a secreted protein, coded by energy homeostasis-associated gene (Enho), is recently reported to modulate atherogenesis, with endothelial-to-mesenchymal transition (EndMT) involved in the early process. We explored whether adropin may alleviate atherosclerosis by regulating EndMT. We found that an intraperitoneal injection of adropin [105 μg/(kg·d) for 13 weeks] inhibited the progression of high-fat diet (HFD)-induced aortic atherosclerosis in apolipoprotein E-deficient mice (ApoE-/-) and those with double gene deletion (ApoE-/-/Enho-/-), as detected by Oil Red O and haematoxylin-eosin staining. In the aortas of ApoE-/- mouse, adropin treatment ameliorated the decrease in the mRNA expression of endothelial cell markers (leukocyte differentiation antigen 31, CD31, and vascular endothelial cadherin, VE-cadherin), but increased that of EndMT markers (alpha smooth muscle actin, α-SMA, and fibroblasts specific protein-1). In vitro, an adropin treatment (30 ng/ml) arrested the hydrogen peroxide (H2O2)-induced EndMT in human umbilical vein endothelial cells (HUVECs), attenuated the morphological changes of HUVECs, reduced the number of immunofluorescence-positive α-SMA, increased the mRNA and protein expressions of CD31 and VE-cadherin, and decreased those of α-SMA. Furthermore, the adropin treatment decreased the mRNA and protein expressions of transforming growth factor (TGF)-β1 and TGF-β2, and suppressed the phosphorylation of downstream signal protein Smad2/3 in HUVECs. These mitigative effects of adropin on H2O2-induced EndMT were reversed by the transfection of TGF-β plasmid. The findings signify that adropin treatment may alleviate the atherosclerosis in ApoE-/-/Enho-/- mice by inhibiting EndMT via the TGF-β/Smad2/3 signaling pathway.
Project description:BackgroundNuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored.MethodsRNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice.ResultsEndothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis.ConclusionsUpon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.
Project description:Nucleotide P2Y2 receptor (P2Y2R) contributes to vascular inflammation by increasing vascular cell adhesion molecule-1 expression in endothelial cells (EC), and global P2Y2R deficiency prevents fatty streak formation in apolipoprotein E null (ApoE-/-) mice. Because P2Y2R is ubiquitously expressed in vascular cells, we investigated the contribution of endothelial P2Y2R in the pathogenesis of atherosclerosis.EC-specific P2Y2R-deficient mice were generated by breeding VEcadherin5-Cre mice with the P2Y2R floxed mice. Endothelial P2Y2R deficiency reduced endothelial nitric oxide synthase activity and significantly altered ATP- and UTP (uridine 5'-triphosphate)-induced vasorelaxation without affecting vasodilatory responses to acetylcholine. Telemetric blood pressure and echocardiography measurements indicated that EC-specific P2Y2R-deficient mice did not develop hypertension. We investigated the role of endothelial P2Y2R in the development of atherosclerotic lesions by crossing the EC-specific P2Y2R knockout mice onto an ApoE-/- background and evaluated lesion development after feeding a standard chow diet for 25 weeks. Histopathologic examination demonstrated reduced atherosclerotic lesions in the aortic sinus and entire aorta, decreased macrophage infiltration, and increased smooth muscle cell and collagen content, leading to the formation of a subendothelial fibrous cap in EC-specific P2Y2R-deficient ApoE-/- mice. Expression and proteolytic activity of matrix metalloproteinase-2 was significantly reduced in atherosclerotic lesions from EC-specific P2Y2R-deficient ApoE-/- mice. Furthermore, EC-specific P2Y2R deficiency inhibited nitric oxide production, leading to significant increase in smooth muscle cell migration out of aortic explants.EC-specific P2Y2R deficiency reduces atherosclerotic burden and promotes plaque stability in ApoE-/- mice through impaired macrophage infiltration acting together with reduced matrix metalloproteinase-2 activity and increased smooth muscle cell migration.
Project description:ObjectiveIncreased myelopoiesis has been linked to risk of atherosclerotic cardiovascular disease (ACD). Excessive myelopoiesis can be driven by dyslipidemia and cholesterol accumulation in hematopoietic stem and progenitor cells (HSPC) and may involve increased signaling via Janus kinase 2 (JAK2). Constitutively activating JAK2 mutants drive biased myelopoiesis and promote development of myeloproliferative neoplasms (MPN) or clonal hematopoiesis, conditions associated with increased risk of ACD. JAK2 inhibitors have been developed as a therapy for MPNs. The potential for JAK2 inhibitors to protect against atherosclerosis has not been tested. We therefore assessed the impact of JAK2 inhibition on atherogenesis.MethodsA selective JAK2 inhibitor TG101348 (fedratinib) or vehicle was given to high-fat high-cholesterol Western diet (WD)-fed wild-type (WT) or Apoe-/- mice. Hematopoietic cell profiles, cell proliferation, and atherosclerosis in WT or Apoe-/- mice were assessed.ResultsTG101348 selectively reversed neutrophilia, monocytosis, HSPC, and granulocyte-macrophage progenitor (GMP) expansion in Apoe-/- mice with decreased cellular phosphorylated STAT5 and ERK1/2 and reduced cell cycling and BrdU incorporation in HSPCs, indicating inhibition of JAK/STAT signaling and cell proliferation. Ten-week WD feeding allowed the development of marked aortic atherosclerosis in Apoe-/- mice which was substantially reduced by TG101348.ConclusionsSelective JAK2 inhibition reduces atherogenesis by suppressing excessive myelopoiesis in hypercholesterolemic Apoe-/- mice. These findings suggest selective JAK2 inhibition as a potential therapeutic approach to decrease ACD risk in patients with increased myelopoiesis and leukocytosis.
Project description:ObjectiveThe gut hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates beta cell function and improves glycemia through its incretin actions. GIP also regulates endothelial function and suppresses adipose tissue inflammation through control of macrophage activity. Activation of the GIP receptor (GIPR) attenuates experimental atherosclerosis and inflammation in mice, however whether loss of GIPR signaling impacts the development of atherosclerosis is uncertain.MethodsAtherosclerosis and related metabolic phenotypes were studied in Apoe-/-:Gipr-/- mice and in Gipr+/+ and Gipr-/- mice treated with an adeno-associated virus expressing PCSK9 (AAV-PCSK9). Bone marrow transplantation (BMT) studies were carried out using donor marrow from Apoe-/-:Gipr-/-and Apoe-/-:Gipr+/+mice transplanted into Apoe-/-:Gipr-/- recipient mice. Experimental endpoints included the extent of aortic atherosclerosis and inflammation, body weight, glucose tolerance, and circulating lipid levels, the proportions and subsets of circulating leukocytes, and tissue gene expression profiles informing lipid and glucose metabolism, and inflammation.ResultsBody weight was lower, circulating myeloid cells were reduced, and glucose tolerance was not different, however, aortic atherosclerosis was increased in Apoe-/-:Gipr-/- mice and trended higher in Gipr-/- mice with atherosclerosis induced by AAV-PCSK9. Levels of mRNA transcripts for genes contributing to inflammation were increased in the aortae of Apoe-/-:Gipr-/- mice and expression of a subset of inflammation-related hepatic genes were increased in Gipr-/- mice treated with AAV-PCSK9. BMT experiments did not reveal marked atherosclerosis, failing to implicate bone marrow derived GIPR + cells in the control of atherosclerosis or aortic inflammation.ConclusionsLoss of the Gipr in mice results in increased aortic atherosclerosis and enhanced inflammation in aorta and liver, despite reduced weight gain and preserved glucose homeostasis. These findings extend concepts of GIPR in the suppression of inflammation-related pathophysiology beyond its classical incretin role in the control of metabolism.
Project description:Atherosclerotic plaques are characterized by an accumulation and subsequent oxidation of LDL, resulting in adaptive immune responses against formed or exposed neoepitopes of the LDL particle. Autoantibodies against native p210, the 3136-3155 amino acid sequence of the LDL protein apolipoprotein B-100 (apoB100) are common in humans and have been associated with less severe atherosclerosis and decreased risk for cardiovascular events in clinical studies. However, whether apoB100 native p210 autoantibodies play a functional role in atherosclerosis is not known. In the present study we immunized apoE-/- mice with p210-PADRE peptide to induce an antibody response against native p210. We also injected mice with murine monoclonal IgG against native p210. Control groups were immunized with PADRE peptide alone or with control murine monoclonal IgG. Immunization with p210-PADRE induced an IgG1 antibody response against p210 that was associated with reduced atherosclerotic plaque formation in the aorta and reduced MDA-LDL content in the lesions. Treatment with monoclonal p210 IgG produced a similar reduction in atherosclerosis as immunization with p210-PADRE. Our findings support an atheroprotective role of antibodies against the apoB100 native p210 and suggest that vaccines that induce the expression of native p210 IgG represent a potential therapeutic strategy for lowering cardiovascular risk.
Project description:The PLPP3 gene encodes for a ubiquitous enzyme that dephosphorylates several lipid substrates. Genome-wide association studies identified PLPP3 as a gene that plays a role in coronary artery disease susceptibility. The aim of the study was to investigate the effect of Plpp3 deletion on atherosclerosis development in mice. Because the constitutive deletion of Plpp3 in mice is lethal, conditional Plpp3 hepatocyte-specific null mice were generated by crossing floxed Plpp3 mice with animals expressing Cre recombinase under control of the albumin promoter. The mice were crossed onto the athero-prone apoE-/- background to obtain Plpp3f/fapoE-/-Alb-Cre+ and Plpp3f/fapoE-/-Alb-Cre- offspring, the latter of which were used as controls. The mice were fed chow or a Western diet for 32 or 12 weeks, respectively. On the Western diet, Alb-Cre+ mice developed more atherosclerosis than Alb-Cre- mice, both at the aortic sinus and aorta. Lipidomic analysis showed that hepatic Plpp3 deletion significantly modified the levels of several plasma lipids involved in atherosclerosis, including lactosylceramides, lysophosphatidic acids, and lysophosphatidylinositols. In conclusion, Plpp3 ablation in mice worsened atherosclerosis development. Lipidomic analysis suggested that the hepatic Plpp3 deletion may promote atherosclerosis by increasing plasma levels of several low-abundant pro-atherogenic lipids, thus providing a molecular basis for the observed results.
Project description:Atherosclerosis is initiated by subendothelial retention of lipoproteins and cholesterol, which triggers a non-resolving inflammatory process that over time leads to plaque progression in the artery wall. Myeloid cells and in particular macrophages are the primary drivers of the inflammatory response and plaque formation. Several immune cells including macrophages, T cells and B cells secrete the anti-inflammatory cytokine IL-10, known to be essential for the atherosclerosis protection. The cellular source of IL-10 in natural atherosclerosis progression is unknown. This study aimed to determine the main IL10-producing cell type in atherosclerosis. To do so, we crossed VertX mice, in which IRES-green fluorescent protein (eGFP) was placed downstream of exon 5 of the Il10 gene, with atherosclerosis-prone Apoe-/- mice. We found that myeloid cells express high levels of IL-10 in VertX Apoe-/- mice in both chow and western-diet fed mice. By single cell RNA sequencing and flow cytometry analysis, we identified resident and inflammatory macrophages in atherosclerotic plaques as the main IL-10 producers. To address whether IL-10 secreted by myeloid cells is essential for the protection, we utilized LyzMCre+Il10fl/fl mice crossed into the Apoe-/- background and confirmed that macrophages were unable to secrete IL-10. Chow and western diet-fed LyzMCre+Il10fl/fl Apoe-/- mice developed significantly larger atherosclerotic plaques as measured by en face morphometry than LyzMCre-Il10 fl/flApoe-/-. Flow cytometry and cytokine measurements suggest that the depletion of IL-10 in myeloid cells increases Th17 cells with elevated CCL2, and TNFα in blood plasma. We conclude that macrophage-derived IL-10 is critical for limiting atherosclerosis in mice.