Stereospecific Formation of E- and Z-Disubstituted Double Bonds by Dehydratase Domains from Modules 1 and 2 of the Fostriecin Polyketide Synthase.
Ontology highlight
ABSTRACT: The dehydratase domain FosDH1 from module 1 of the fostriecin polyketide synthase (PKS) catalyzed the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP1 (5) and (E)-2-butenoyl-FosACP1 (11), as established by a combination of direct LC-MS/MS and chiral GC-MS. FosDH1 did not act on either (3S)-3-hydroxybutyryl-FosACP1 (6) or (Z)-2-butenoyl-FosACP1 (12). FosKR2, the ketoreductase from module 2 of the fostriecin PKS that normally provides the natural substrate for FosDH2, was shown to catalyze the NADPH-dependent stereospecific reduction of 3-ketobutyryl-FosACP2 (23) to (3S)-3-hydroxybutyryl-FosACP2 (8). Consistent with this finding, FosDH2 catalyzed the interconversion of the corresponding triketide substrates (3R,4E)-3-hydroxy-4-hexenoyl-FosACP2 (18) and (2Z,4E)-2,4-hexadienoyl-FosACP2 (21). FosDH2 also catalyzed the stereospecific hydration of (Z)-2-butenoyl-FosACP2 (14) to (3S)-3-hydroxybutyryl-FosACP2 (8). Although incubation of FosDH2 with (3S)-3-hydroxybutyryl-FosACP2 (8) did not result in detectable accumulation of (Z)-2-butenoyl-FosACP2 (14), FosDH2 catalyzed the slow exchange of the 3-hydroxy group of 8 with [18O]-water. FosDH2 unexpectedly could also support the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP2 (7) and (E)-2-butenoyl-FosACP2 (13).
SUBMITTER: Shah DD
PROVIDER: S-EPMC5636686 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA