Unknown

Dataset Information

0

MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy.


ABSTRACT: Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and 13C-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by coadministration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. Cancer Res; 77(21); 5913-24. ©2017 AACR.

SUBMITTER: Beloueche-Babari M 

PROVIDER: S-EPMC5669455 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy.

Beloueche-Babari Mounia M   Wantuch Slawomir S   Casals Galobart Teresa T   Koniordou Markella M   Parkes Harold G HG   Arunan Vaitha V   Chung Yuen-Li YL   Eykyn Thomas R TR   Smith Paul D PD   Leach Martin O MO  

Cancer research 20170918 21


Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism <i>in vitro</i> and <i>in vivo</i> Exposing human lymph  ...[more]

Similar Datasets

| S-EPMC4677409 | biostudies-literature
2023-11-03 | GSE239379 | GEO
| S-EPMC2940553 | biostudies-literature
2023-04-25 | GSE225302 | GEO
| S-EPMC6175046 | biostudies-other
| S-EPMC7255622 | biostudies-literature
| S-EPMC5846391 | biostudies-literature
| S-EPMC2822895 | biostudies-literature
| S-EPMC6524558 | biostudies-literature
| S-EPMC5082749 | biostudies-literature