Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells.
Ontology highlight
ABSTRACT: ROR1 (receptor tyrosine kinase-like orphan receptor 1) is a conserved, oncoembryonic surface antigen expressed in chronic lymphocytic leukemia (CLL). We found that ROR1 associates with hematopoietic-lineage-cell-specific protein 1 (HS1) in freshly isolated CLL cells or in CLL cells cultured with exogenous Wnt5a. Wnt5a also induced HS1 tyrosine phosphorylation, recruitment of ARHGEF1, activation of RhoA and enhanced chemokine-directed migration; such effects could be inhibited by cirmtuzumab, a humanized anti-ROR1 mAb. We generated truncated forms of ROR1 and found its extracellular cysteine-rich domain or kringle domain was necessary for Wnt5a-induced HS1 phosphorylation. Moreover, the cytoplamic, and more specifically the proline-rich domain (PRD), of ROR1 was required for it to associate with HS1 and allow for F-actin polymerization in response to Wnt5a. Accordingly, we introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1 PRD at positions 784, 808, 826, 841 or 850 in potential SH3-binding motifs. In contrast to wild-type ROR1, or other ROR1P→︀A mutants, ROR1P(841)A had impaired capacity to recruit HS1 and ARHGEF1 to ROR1 in response to Wnt5a. Moreover, Wnt5a could not induce cells expressing ROR1P(841)A to phosphorylate HS1 or activate ARHGEF1, and was unable to enhance CLL-cell motility. Collectively, these studies indicate HS1 plays an important role in ROR1-dependent Wnt5a-enhanced chemokine-directed leukemia-cell migration.
Project description:Chronic lymphocytic leukemia cells (CLL) migrate between the blood and lymphoid tissues in response to chemokines. Such migration requires structured cytoskeletal-actin polymerization, which may involve the protein cortactin. We discovered that treatment of CLL cells with Wnt5a causes Receptor tyosin kinase-like orphan receptor 1 (ROR1) to bind cortactin, which undergoes tyrosine phosphorylation at Y421, recruits ARHGEF1, and activates RhoA, thereby enhancing leukemia-cell migration; such effects could be inhibited by cirmtuzumab, a humanized mAb specific for ROR1. We transfected the CLL-cell-line MEC1 with either full-length ROR1 or various mutant forms of ROR1 to examine the structural features required for binding cortactin. We found that the proline-rich domain (PRD) was necessary for ROR1 to recruit cortactin. We generated MEC1 cells that each expressed a mutant form of ROR1 with a single amino-acid substitution of alanine (A) for proline (P) in potential SH3-binding sites in the ROR1-PRD at positions 784, 808, 826, 841, or 850. In contrast to wild-type ROR1, or other ROR1P=>A mutants, ROR1P(841)A failed to complex with cortactin or ARHGEF1 in response to Wnt5a. Moreover, Wnt5a could not induce MEC1-ROR1P(841)A to phosphorylate cortactin or enhance CLL-cell F-actin polymerization. Taken together, these studies show that cortactin plays an important role in ROR1-dependent Wnt5a-enhanced CLL-cell migration.
Project description:Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic protein expressed on chronic lymphocytic leukemia (CLL) that can serve as a receptor for Wnt5a, which can promote leukemia cell migration, proliferation, and survival. We found Wnt5a could induce ROR1 to complex with DOCK2 (dedicator of cytokinesis 2) and induce activation of Rac1/2; these effects could be blocked by cirmtuzumab, a humanized anti-ROR1 monoclonal antibody. We find that silencing DOCK2 specifically impaired the capacity of Wnt5a to induce activation of Rac1/2 or enhance CLL cell proliferation. We generated truncated forms of ROR1 and found the cytoplasmic proline-rich domain (PRD) of ROR1 was required for Wnt5a to induce ROR1 to complex with DOCK2 and activate Rac1/2 in the CLL cell-line MEC1. We introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1-PRD at potential binding sites for the Src-homology 3 domain of DOCK2. In contrast to wild-type ROR1, or other ROR1 P→A variants, ROR1P808A was unable to recruit DOCK2 in response to Wnt5a. Moreover, unlike MEC1 cells transfected with wild-type ROR1 or ROR1 with P→A substitutions at positions 784, 826, or 841, MEC1 cells transfected to express ROR1P808A did not have a growth advantage over MEC1 cells that do not express ROR1. This study reveals that the recruitment of DOCK2 may be critical for the capacity of Wnt5a to enhance CLL proliferation, which may contribute to the observed increased tendency for disease progression in patients who have CLL cells that express high levels of ROR1.
Project description:Evolutionarily conserved receptor tyrosine kinase–like orphan receptor-1 and -2 (ROR1/2) are considered distinct receptors for Wnt5a and are implicated in noncanonical Wnt signaling in organogenesis and cancer metastasis. We found that Wnt5a enhanced proliferation and migration of chronic lymphocytic leukemia (CLL) cells and that these effects were blocked by the humanized anti-ROR1 mAb cirmtuzumab (UC-961). Treatment of CLL cells with Wnt5a induced ROR1 to oligomerize with ROR2 and recruit guanine exchange factors (GEFs), which activated Rac1 and RhoA; siRNA-mediated silencing of either ROR1 or ROR2 or treatment with UC-961 inhibited these effects. Using the ROR1-deficient CLL cell line MEC1, we demonstrated that ectopic ROR1 expression induced ROR1/ROR2 heterooligomers, which recruited GEFs, and enhanced proliferation, cytokine-directed migration, and engraftment potential of MEC1 cells in immune-deficient mice. Notably, treatment with UC-961 inhibited engraftment of ROR1+ leukemia cells in immune-competent ROR1-transgenic mice. Molecular analysis revealed that the extracellular Kringle domain is required for ROR1/ROR2 heterooligomerization and the cysteine-rich domain or intracellular proline-rich domain is required for Wnt5a-induced recruitment of GEFs to ROR1/ROR2. This study identifies an interaction between ROR1 and ROR2 that is required for Wnt5a signaling that promotes leukemia chemotaxis and proliferation.
Project description:Wnt5a can activate Rho GTPases in chronic lymphocytic leukemia (CLL) cells by inducing the recruitment of ARHGEF2 to ROR1. Mass spectrometry on immune precipitates of Wnt5a-activated ROR1 identified 14-3-3ζ, which was confirmed by co-immunoprecipitation. The capacity of Wnt5a to induce ROR1 to complex with 14-3-3ζ could be blocked in CLL cells by treatment with cirmtuzumab, a humanized mAb targeting ROR1. Silencing 14-3-3ζ via small interfering RNA impaired the capacity of Wnt5a to: (1) induce recruitment of ARHGEF2 to ROR1, (2) enhance in vitro exchange activity of ARHGEF2 and (3) induce activation of RhoA and Rac1 in CLL cells. Furthermore, CRISPR/Cas9 deletion of 14-3-3ζ in ROR1-negative CLL cell-line MEC1, and in MEC1 cells transfected to express ROR1 (MEC1-ROR1), demonstrated that 14-3-3ζ was necessary for the growth/engraftment advantage of MEC1-ROR1 over MEC1 cells. We identified a binding motif (RSPS857SAS) in ROR1 for 14-3-3ζ. Site-directed mutagenesis of ROR1 demonstrated that serine-857 was required for the recruitment of 14-3-3ζ and ARHGEF2 to ROR1, and activation of RhoA and Rac1. Collectively, this study reveals that 14-3-3ζ plays a critical role in Wnt5a/ROR1 signaling, leading to enhanced CLL migration and proliferation.
Project description:Patients with chronic lymphocytic leukemia (CLL) have high plasma-levels of Wnt5a, which can induce phosphorylation of ERK1/2 and enhance CLL-cell proliferation. Such effects could be inhibited by treatment with an ERK1/2 inhibitor, ERK1/2-specific siRNA, or cirmtuzumab, an anti-ROR1 mAb. The CLL-derived line, MEC1, expresses Wnt5a, but not ROR1. MEC1 cells transfected to express ROR1 (MEC1-ROR1) had higher levels of phosphorylated ERK1/2 than parental MEC1, or MEC1 transfected with ROR1ΔPRD, a truncated ROR1 lacking the cytoplasmic proline-rich domain (PRD), or ROR1P808A a mutant ROR1 with a P→A substitution at 808, which is required for complexing with the Rac-specific-guanine-nucleotide-exchange factor DOCK2 upon stimulation with Wnt5a. We silenced DOCK2 with siRNA and found this repressed the capacity of Wnt5a to induce ERK1/2 phosphorylation in MEC1-ROR1 or CLL cells. CLL cells that expressed ROR1 had higher levels of phosphorylated ERK1/2 or DOCK2 than CLL cells lacking ROR1. Although we found ibrutinib could inhibit the phosphorylation of ERK1/2 and DOCK2 induced by B-cell-receptor ligation, we found that this drug was unable to inhibit Wnt5a-induced, ROR1-dependent phosphorylation of ERK1/2 or DOCK2. This study demonstrates that Wnt5a can induce activation of ERK1/2 and enhance CLL-cell proliferation via a ROR1/DOCK2-dependent pathway independent of BTK.
Project description:Coculture of nurse-like cells (NLCs) with chronic lymphocytic leukemia (CLL) cells induced leukemia cell phosphorylation of STAT3 (pSTAT3), which could be blocked by anti-Wnt5a antibodies or the anti-ROR1 monoclonal antibody, cirmtuzumab. Time-course studies revealed Wnt5a could induce activation of NF-κB within 30 minutes, but required more than 3 hours to induce pSTAT3. Culture of isolated CLL cells for 24 hours revealed Wnt5a-induced expression of interleukin 6 (IL-6), IL-8, CCL2, CCL3, CCL4, and CXCL1, which in turn could induce pSTAT3 in unstimulated CLL cells within 30 minutes. We found that Wnt5a could induce CLL cell expression of NF-κB target genes, including IL-6, and that this effect could be blocked by cirmtuzumab or drugs that inhibit NF-κB. Examination of CLL cells and plasma collected from patients treated with cirmtuzumab revealed reduced levels of phosphorylated p65 and diminished expression of NF-κB and STAT3 target genes in CLL cells, as well as lower plasma levels of IL-6, in the samples after therapy. Collectively, these studies indicate that Wnt5a/ROR1-dependent signaling contributes to CLL cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pSTAT3. As such, this study demonstrates that cirmtuzumab can inhibit leukemia cell activation of both NF-κB and STAT3 in patients with CLL.
Project description:ROR1 is a conserved oncoembryonic surface protein expressed in breast cancer. Here we report that ROR1 associates with cortactin in primary breast-cancer cells or in MCF7 transfected to express ROR1. Wnt5a also induced ROR1-dependent tyrosine phosphorylation of cortactin (Y421), which recruited ARHGEF1 to activate RhoA and promote breast-cancer-cell migration; such effects could be inhibited by cirmtuzumab, a humanized mAb specific for ROR1. Furthermore, treatment of mice bearing breast-cancer xenograft with cirmtuzumab inhibited cortactin phosphorylation in vivo and impaired metastatic development. We established that the proline at 841 of ROR1 was required for it to recruit cortactin and ARHGEF1, activate RhoA, and enhance breast-cancer-cell migration in vitro or development of metastases in vivo. Collectively, these studies demonstrate that the interaction of ROR1 with cortactin plays an important role in breast-cancer-cell migration and metastasis.
Project description:Although the BH3-mimetic venetoclax is highly cytotoxic for chronic lymphocytic leukemia (CLL) cells, some patients with CLL fail to clear minimal residual disease (MRD). We examined the CLL cells of seven such patients (CLL1-7) and found each had high-level expression of ROR1. By examining the CLL cells from such patients prior to therapy at SC1 and then more than 1 year later (Sample Collection 2 (SC2)), when they had progressive increases in MRD despite continued venetoclax therapy, we found the levels of ROR1 expressed on CLL cells at SC2 were significantly higher than that on CLL cells collected at SC1. At SC2, we also observed upregulation of genes induced by Wnt5a-induced ROR1 signaling, including BCL2L1. Transduction of the CLL-cell-line MEC1 to express ROR1 enhanced expression of target genes induced by ROR1-signaling, increased expression of BCL-XL, and enhanced resistance to venetoclax, even in MEC1 made to express mutant forms of BCL2, which are associated with venetoclax resistance. Treatment of primary CLL cells with Wnt5a also increased their resistance to venetoclax, an effect that could be inhibited by the anti-ROR1 mAb (UC-961, zilovertamab). Collectively, these studies indicate that Wnt5a-induced ROR1-signaling can enhance resistance to venetoclax therapy.
Project description:The wingless and integration site growth factor-5a (Wnt5a) is a ligand of the receptor tyrosine kinase-like orphan receptor-1 (ROR1). Because both Wnt5a and ROR1 are expressed in circulating chronic lymphocytic leukemia (CLL) cells, and because in other cell types, STAT3, which is constitutively activated in CLL, induces Wnt5a signaling, we wondered whether STAT3 induces the expression of Wnt5a in CLL cells. Sequence analysis detected four putative STAT3 binding sites in close proximity to the Wnt5a gene promoter's start codon. Chromatin immunoprecipitation and EMSA revealed that STAT3 binds to the Wnt5a gene promoter, and a luciferase assay showed that STAT3 activates the Wnt5a gene. Additionally, transfection of peripheral blood CLL cells with STAT3 short hairpin RNA downregulated Wnt5a mRNA and protein levels, suggesting that STAT3 binds to the Wnt5a gene promoter and induces the expression of Wnt5a in CLL cells. Flow cytometry and confocal microscopy determined that both Wnt5a and its receptor ROR1 are coexpressed on the surface of CLL cells, and Western immunoblotting showed an inverse correlation between Wnt5a and ROR1 protein levels, implying that, regardless of CLL cells' ROR1 levels, blocking the interaction between Wnt5a and ROR1 might be beneficial to patients with CLL. Indeed, transfection of CLL cells with Wnt5a small interfering RNA reduced Wnt5a mRNA and protein levels and significantly increased the spontaneous apoptotic rate of CLL cells. Taken together, our data unravel an autonomous STAT3-driven prosurvival circuit that provides circulating CLL cells with a microenvironment-independent survival advantage.
Project description:We used a proteomic approach for identifying molecules involved in the pathogenesis of chronic lymphocytic leukemia (CLL). We investigated 14 patients who were completely concordant for IgV(H) mutational status (unmutated vs. mutated), CD38 expression (positive vs. negative), and clinical behavior (progressive vs. stable); these patients were characterized as having either poor or good prognoses. The 2 patient subsets differed in the expression of hematopoietic lineage cell-specific protein 1 (HS1). In patients with poor prognoses, most HS1 protein was constitutively phosphorylated, whereas only a fraction was phosphorylated in patients with good prognoses. This difference was investigated in a larger cohort of 26 unselected patients. The survival curve of all 40 patients analyzed revealed that patients with predominately phosphorylated HS1 experience a significantly shorter median survival time. As HS1 is a protein pivotal in the signal cascade triggered by B cell receptor (BCR) stimulation, we studied its pattern of expression following BCR engagement. Normal mature B cells stimulated by anti-IgM shifted the non- or less-phosphorylated form of HS1 toward the more phosphorylated form. Naive B cells showed both HS1 forms while memory B cells expressed mainly the phosphorylated fraction. These data indicate a central role for antigen stimulation in CLL and suggest a new therapeutic target for patients with aggressive disease.