F-actin reorganization by V-ATPase inhibition in prostate cancer.
Ontology highlight
ABSTRACT: The vacuolar ATPase (V-ATPase) proton pump sustains cellular pH homeostasis, and its inhibition triggers numerous stress responses. However, the cellular mechanisms involved remain largely elusive in cancer cells. We studied V-ATPase in the prostate cancer (PCa) cell line PC-3, which has characteristics of highly metastatic PCa. V-ATPase inhibitors impaired endo-lysosomal pH, vesicle trafficking, migration, and invasion. V-ATPase accrual in the Golgi and recycling endosomes suggests that traffic of internalized membrane vesicles back to the plasma membrane was particularly impaired. Directed movement provoked co-localization of V-ATPase containing vesicles with F-actin near the leading edge of migrating cells. V-ATPase inhibition prompted prominent F-actin cytoskeleton reorganization. Filopodial projections were reduced, which related to reduced migration velocity. F-actin formed novel cytoplasmic rings. F-actin rings increased with extended exposure to sublethal concentrations of V-ATPase inhibitors, from 24 to 48?h, as the amount of alkalinized endo-lysosomal vesicles increased. Studies with chloroquine indicated that F-actin rings formation was pH-dependent. We hypothesize that these novel F-actin rings assemble to overcome widespread traffic defects caused by V-ATPase inhibition, similar to F-actin rings on the surface of exocytic organelles.
SUBMITTER: Licon-Munoz Y
PROVIDER: S-EPMC5703614 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA