Unknown

Dataset Information

0

Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells.


ABSTRACT: Normal epithelial cells are stably connected to each other via the apical junctional complex (AJC). AJCs, however, tend to be disrupted during tumor progression, and this process is implicated in cancer dissemination. Here, using colon carcinoma cells that fail to form AJCs, we investigated molecular defects behind this failure through a search for chemical compounds that could restore AJCs, and found that microtubule-polymerization inhibitors (MTIs) were effective. MTIs activated GEF-H1/RhoA signaling, causing actomyosin contraction at the apical cortex. This contraction transmitted force to the cadherin-catenin complex, resulting in a mechanosensitive recruitment of vinculin to cell junctions. This process, in turn, recruited PDZ-RhoGEF to the junctions, leading to the RhoA/ROCK/LIM kinase/cofilin-dependent stabilization of the junctions. RhoGAP depletion mimicked these MTI-mediated processes. Cells that normally organize AJCs did not show such MTI/RhoA sensitivity. Thus, advanced carcinoma cells require elevated RhoA activity for establishing robust junctions, which triggers tension-sensitive reorganization of actin/adhesion regulators.

SUBMITTER: Ito S 

PROVIDER: S-EPMC5705652 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells.

Ito Shoko S   Okuda Satoru S   Abe Masako M   Fujimoto Mari M   Onuki Tetsuo T   Nishimura Tamako T   Takeichi Masatoshi M  

Nature communications 20171128 1


Normal epithelial cells are stably connected to each other via the apical junctional complex (AJC). AJCs, however, tend to be disrupted during tumor progression, and this process is implicated in cancer dissemination. Here, using colon carcinoma cells that fail to form AJCs, we investigated molecular defects behind this failure through a search for chemical compounds that could restore AJCs, and found that microtubule-polymerization inhibitors (MTIs) were effective. MTIs activated GEF-H1/RhoA si  ...[more]

Similar Datasets

| S-EPMC2906578 | biostudies-literature
| S-EPMC6400824 | biostudies-literature
| S-EPMC4435497 | biostudies-literature
2024-06-24 | GSE255172 | GEO
| S-EPMC9577410 | biostudies-literature
| S-EPMC6224797 | biostudies-literature
| S-EPMC6056535 | biostudies-literature
| S-EPMC5669342 | biostudies-literature
| S-EPMC6467489 | biostudies-literature
| S-EPMC5210093 | biostudies-literature