Unknown

Dataset Information

0

Folate deficiency disturbs hsa-let-7 g level through methylation regulation in neural tube defects.


ABSTRACT: Folic acid deficiency during pregnancy is believed to be a high-risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid-regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation changes of 22 miRNAs in 57 human NTD cases to explore whether such changes are involved in miRNA regulation in NTD cases through folate metabolism. In total, eight of the 22 miRNAs tested reduced their methylation modifications in NTD cases, which provide direct evidence of the roles of interactions between DNA methylation and miRNA level in these defects. Among the findings, there was a significant association between folic acid concentration and hsa-let-7 g methylation level in NTD cases. Hypomethylation of hsa-let-7 g increased its own expression level in both NTD cases and cell models, which indicated that hsa-let-7 g methylation directly regulates its own expression. Overexpression of hsa-let-7 g, along with its target genes, disturbed the migration and proliferation of SK-N-SH cells, implying that hsa-let-7 g plays important roles in the prevention of NTDs by folic acid. In summary, our data suggest a relationship between aberrant methylation of hsa-let-7 g and disturbed folate metabolism in NTDs, implying that improvements in nutrition during early pregnancy may prevent such defects, possibly via the donation of methyl groups for miRNAs.

SUBMITTER: Wang L 

PROVIDER: S-EPMC5706510 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Folate deficiency disturbs hsa-let-7 g level through methylation regulation in neural tube defects.

Wang Li L   Shangguan Shaofang S   Xin Yu Y   Chang Shaoyan S   Wang Zhen Z   Lu Xiaolin X   Wu Lihua L   Niu Bo B   Zhang Ting T  

Journal of cellular and molecular medicine 20170619 12


Folic acid deficiency during pregnancy is believed to be a high-risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid-regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation cha  ...[more]

Similar Datasets

| S-EPMC9916799 | biostudies-literature
| S-EPMC10720071 | biostudies-literature
| S-EPMC5650505 | biostudies-literature
2023-07-25 | GSE238081 | GEO
| S-EPMC2970514 | biostudies-literature
2022-09-20 | GSE204874 | GEO
| S-EPMC3799525 | biostudies-literature
| S-EPMC6852770 | biostudies-literature
2022-09-20 | GSE204870 | GEO
2022-09-20 | GSE204872 | GEO