Unknown

Dataset Information

0

Statistical significance for hierarchical clustering.


ABSTRACT: Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high-dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this article, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets.

SUBMITTER: Kimes PK 

PROVIDER: S-EPMC5708128 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Statistical significance for hierarchical clustering.

Kimes Patrick K PK   Liu Yufeng Y   Neil Hayes David D   Marron James Stephen JS  

Biometrics 20170118 3


Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high-dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural samplin  ...[more]

Similar Datasets

| S-EPMC4706235 | biostudies-literature
2022-11-19 | E-MTAB-8173 | biostudies-arrayexpress
2008-08-30 | GSE12627 | GEO
| S-EPMC5751574 | biostudies-literature
| S-EPMC2143734 | biostudies-other
| S-EPMC3108832 | biostudies-literature
| S-EPMC7959621 | biostudies-literature
2010-09-13 | GSE9424 | GEO
| S-EPMC3740841 | biostudies-literature
| S-EPMC1868764 | biostudies-literature