Unknown

Dataset Information

0

Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability.


ABSTRACT: In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386) was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C) demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C) and displayed a more prolonged half-life in the range of 40-60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.

SUBMITTER: Veno J 

PROVIDER: S-EPMC5713198 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability.

Veno Jiivittha J   Ahmad Kamarudin Nor Hafizah NH   Mohamad Ali Mohd Shukuri MS   Masomian Malihe M   Raja Abd Rahman Raja Noor Zaliha RNZ  

International journal of molecular sciences 20171104 11


In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from <i>Staphylococcus epidermis</i> AT2 (rT-M386) was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C) demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases wer  ...[more]

Similar Datasets

| S-EPMC2956089 | biostudies-literature
| S-EPMC5987743 | biostudies-literature
| S-EPMC7063977 | biostudies-literature
| S-EPMC7492553 | biostudies-literature
| S-EPMC3490468 | biostudies-literature
| S-EPMC7435748 | biostudies-literature
| S-EPMC8558439 | biostudies-literature
| S-EPMC10101328 | biostudies-literature
| S-EPMC7477909 | biostudies-literature
| S-EPMC4012793 | biostudies-literature