MicroRNA-520d-5p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting PTTG1.
Ontology highlight
ABSTRACT: Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. Acquiring a better understanding of the pathogenic mechanisms is essential to the design of effective therapeutic strategies. Previous studies have found that miR-520d-5p was negatively correlated with glioma grade, but its role and mechanism in glioma progression remain largely unknown. In the present study, we reported that miR-520d-5p directly targeted the Pituitary Tumor Transforming Gene 1 (PTTG1) and functioned as a tumor-suppressor in glioma. The expression of miR-520d-5p in glioma cells and specimens were detected by Quantitative reverse transcription-PCR and Fluorescence in situ hybridization (FISH). The effects of miR-520d-5p on glioma progression was examined by cell-counting kit 8, colony formation, 5-ethynyl-2-deoxyuridine (EDU) and flow cytometry assays. Using bioinformatics and luciferase reporter assays, we identified PTTG1 as a novel and direct target of miR-520d-3p. A xenograft model was used to study the effect of miR-520d-5p on tumor growth and angiogenesis. We found that miR-520d-5p expression was significantly decreased in glioma cell lines and tissues. Overexpression of miR-520d-5p showed a significant inhibitory effect on cell proliferation and accompanied cell cycle G0/G1 arrest in U87-MG and LN229 glioma cells. PTTG1 was a novel and direct target of miR-520d-5p, and the protein expression of PTTG1 was markedly reduced after overexpression of miR-520d-5p in U87-MG and LN229 cells. Overexpression of PTTG1 reversed the inhibitory effect of miR-520d-5p on glioma cell proliferation. In vivo studies confirmed that miR-520d-5p overexpression retarded the growth of U87 xenograft tumors, which was accompanied by reduced expression of PTTG1. In conclusion, these results provide compelling evidence that miR-520d-5p functions as an anti-onco-miRNA, which is important in inhibiting cell proliferation in GBM, and its anti-oncogenic effects are mediated chiefly through direct suppression of PTTG1 expression. Therefore, we suggest that miR-520d-5p is a potential candidate for the prevention of glioblastoma.
SUBMITTER: Zhi T
PROVIDER: S-EPMC5714772 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
ACCESS DATA