ABSTRACT: BACKGROUND:MicroRNAs can be used in the prognosis of malignancies; however, their regulatory mechanisms are unknown, especially in pancreatic ductal adenocarcinoma (PDAC). METHODS:In 120 PDAC specimens, miRNA levels were assessed by quantitative real time polymerase chain reaction (qRT-PCR). Then, the role of miR-29b-2-5p in cell proliferation was evaluated both in vitro (Trypan blue staining and cell cycle analysis in the two PDAC cell lines SW1990 and Capan-2) and in vivo using a xenograft mouse model. Next, bioinformatics methods, a luciferase reporter assay, Western blot, and immunohistochemistry (IHC) were applied to assess the biological effects of Cbl-b inhibition by miR-29b-2-5p. Moreover, the relationship between Cbl-b and p53 was evaluated by immunoprecipitation (IP), Western blot, and immunofluorescence. RESULTS:From the 120 PDAC patients who underwent surgical resection, ten patients with longest survival and ten with shortest survival were selected. We found that high miR-29b-2-5p expression was associated with good prognosis (p?=?0.02). The validation cohort confirmed miR-29b-2-5p as an independent prognostic factor in PDAC (n?=?100, 95% CI?=?0.305-0.756, p?=?0.002). Furthermore, miR-29b-2-5p inhibited cell proliferation, induced cell cycle arrest, and promoted apoptosis both in vivo and in vitro. Interestingly, miR-29b-2-5p directly bound the Cbl-b gene, down-regulating its expression and reducing Cbl-b-mediated degradation of p53. Meanwhile, miR-29b-2-5p expression was negatively correlated with Cbl-b in PDAC tissues (r?=?-?0.33, p?=?0.001). CONCLUSIONS:Taken together, these findings indicated that miR-29b-2-5p improves prognosis in PDAC by targeting Cbl-b to promote p53 expression, and would constitute an important prognostic factor in PDAC.