Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene.
Ontology highlight
ABSTRACT: We report an efficient strategy for the asymmetric synthesis of trifluoromethyl-substituted cyclopropanes by means of myoglobin-catalyzed olefin cyclopropanation reactions in the presence of 2-diazo-1,1,1-trifluoroethane (CF3CHN2) as the carbene donor. These transformations were realized using a two-compartment setup in which ex situ generated gaseous CF3CHN2 is processed by engineered myoglobin catalysts expressed in bacterial cells. This approach was successfully applied to afford a variety of trans-1-trifluoromethyl-2-arylcyclopropanes in high yields (61-99%) and excellent diastereo- and enantioselectivity (97-99.9% de and ee). Furthermore, mirror-image forms of these products could be obtained using myoglobin variants featuring stereodivergent selectivity. These reactions provide a convenient and effective biocatalytic route to the stereoselective synthesis of key fluorinated building blocks of high value for medicinal chemistry and drug discovery. This work expands the range of carbene-mediated transformations accessible via metalloprotein catalysts and introduces a potentially general strategy for exploiting gaseous and/or hard-to-handle carbene donor reagents in biocatalytic carbene transfer reactions.
SUBMITTER: Tinoco A
PROVIDER: S-EPMC5755966 | biostudies-literature | 2017 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA