Unknown

Dataset Information

0

In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress.


ABSTRACT: The unfolded protein response (UPR) is a key signaling system that regulates protein homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay that quantifies IRE1 luminal domain and BiP association and dissociation upon addition of misfolded proteins. Using this technique, we reassess our previous observations and extend mechanistic insight to cover other general ER misfolded protein substrates and their folded native state. Moreover, we evaluate the key BiP substrate-binding domain mutant V461F. The new experimental approach significantly enhances the evidence suggesting an allosteric model for UPR induction upon ER stress.

SUBMITTER: Kopp MC 

PROVIDER: S-EPMC5756023 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress.

Kopp Megan C MC   Nowak Piotr R PR   Larburu Natacha N   Adams Christopher J CJ   Ali Maruf Mu MM  

eLife 20180105


The unfolded protein response (UPR) is a key signaling system that regulates protein homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay that quantifies IRE1 luminal do  ...[more]

Similar Datasets

| S-EPMC2172501 | biostudies-literature
| S-EPMC6417858 | biostudies-literature
| S-EPMC6859729 | biostudies-literature
| S-EPMC2941319 | biostudies-literature
| S-EPMC9076838 | biostudies-literature
| S-EPMC1237147 | biostudies-literature
| S-EPMC6711704 | biostudies-literature
| S-EPMC5665437 | biostudies-literature
| S-EPMC5363067 | biostudies-literature
| S-EPMC5596431 | biostudies-literature