Human immunodeficiency virus type-1 (HIV-1) evades antibody-dependent phagocytosis.
Ontology highlight
ABSTRACT: Fc gamma receptor (FcyR)-mediated antibody functions play a crucial role in preventing HIV infection. One such function, antibody-dependent phagocytosis (ADP), is thought to be involved in controlling other viral infections, but its role in HIV infection is unknown. We measured the ability of HIV-specific polyclonal and monoclonal antibodies (mAbs) to mediate the internalization of HIV-1 virions and HIV-1-decorated cells by phagocytes. To measure ADP of virions, we primarily used a green-fluorescent protein-expressing molecular clone of HIV-1JRFL, an R5, clinical isolate, in combination with polyclonal HIVIG or mAbs known to capture and/or neutralize HIV-1. THP-1 and U937 cells, as well as freshly isolated primary monocytes from healthy individuals, were used as phagocytic effector cells, and uptake of virions was measured by cytometry. We surprisingly found minimal or no ADP of virions with any of the antibodies. However, after coating virions with gp41 or with gp41-derived peptides, gp41- (but not gp120-) specific mAbs efficiently mediated phagocytosis. We estimated that a minimum of a few hundred gp41 molecules were needed for successful phagocytosis, which is similar to the number of envelope spikes on viruses that are readily phagocytosed (e.g. influenza virus). Furthermore, by employing fluorescence correlation spectroscopy, a well-established technique to measure particle sizes and aggregation phenomena, we found a clear association between virus aggregation and ADP. In contrast to virions themselves, virion-decorated cells were targets for ADP or trogocytosis in the presence of HIV-specific antibodies. Our findings indicate that ADP of virions may not play a role in preventing HIV infection, likely due to the paucity of trimers and the consequent inability of virion-bound antibody to cross-link FcyRs on phagocytes. However, ADP or trogocytosis could play a role in clearing HIV-infected cells and cells on the verge of infection.
SUBMITTER: Gach JS
PROVIDER: S-EPMC5760106 | biostudies-literature | 2017 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA