Unknown

Dataset Information

0

Optimizing the nanoscale quantitative optical imaging of subfield scattering targets.


ABSTRACT: The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information and, with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets.

SUBMITTER: Henn MA 

PROVIDER: S-EPMC5815523 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimizing the nanoscale quantitative optical imaging of subfield scattering targets.

Henn Mark-Alexander MA   Barnes Bryan M BM   Zhou Hui H   Sohn Martin M   Silver Richard M RM  

Optics letters 20161101 21


The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information and, with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of su  ...[more]

Similar Datasets

| S-EPMC10613237 | biostudies-literature
| S-EPMC9938237 | biostudies-literature
| S-EPMC3677104 | biostudies-literature
| S-EPMC5155520 | biostudies-literature
| S-EPMC11351428 | biostudies-literature
| S-EPMC4785223 | biostudies-literature
| S-EPMC3512086 | biostudies-other
| S-EPMC3432504 | biostudies-literature
| S-EPMC6044614 | biostudies-literature
| S-EPMC7455485 | biostudies-literature