Unknown

Dataset Information

0

Transcription factor YY1 can control AID-mediated mutagenesis in mice.


ABSTRACT: Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (Ig?AID yy1f/f ) or that express normal AID levels (yy1f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the S? switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination.

SUBMITTER: Zaprazna K 

PROVIDER: S-EPMC5884117 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcription factor YY1 can control AID-mediated mutagenesis in mice.

Zaprazna Kristina K   Basu Arindam A   Tom Nikola N   Jha Vibha V   Hodawadekar Suchita S   Radova Lenka L   Malcikova Jitka J   Tichy Boris B   Pospisilova Sarka S   Atchison Michael L ML  

European journal of immunology 20171114 2


Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus  ...[more]

Similar Datasets

| S-EPMC4889928 | biostudies-literature
| S-EPMC6804577 | biostudies-literature
| S-EPMC5871760 | biostudies-literature
| S-EPMC7262509 | biostudies-literature
| S-EPMC10340792 | biostudies-literature
| S-EPMC8465765 | biostudies-literature
| S-EPMC3362786 | biostudies-literature
| S-EPMC10120156 | biostudies-literature
| S-EPMC3679541 | biostudies-literature
| S-EPMC7299785 | biostudies-literature