Unknown

Dataset Information

0

Reagent Controlled Stereoselective Synthesis of ?-Glucans.


ABSTRACT: The development of a general glycosylation method that allows for the stereoselective construction of glycosidic linkages is a tremendous challenge. Because of the differences in steric and electronic properties of the building blocks used, the outcome of a glycosylation reaction can vary greatly when switching form one glycosyl donor-acceptor pair to another. We here report a strategy to install cis-glucosidic linkages in a fully stereoselective fashion that is under direct control of the reagents used to activate a single type of donor building block. The activating reagents are tuned to the intrinsic reactivity of the acceptor alcohol to match the reactivity of the glycosylating agent with the reactivity of the incoming nucleophile. A protecting group strategy is introduced that is based on the sole use of benzyl-ether type protecting groups to circumvent changes in reactivity as a result of the protecting groups. For the stereoselective construction of the ?-glucosyl linkages to a secondary alcohol, a per-benzylated glusosyl imidate donor is activated with a combination of trimethylsilyltriflate and DMF, while activation of the same imidate donor with trimethylsilyl iodide in the presence of triphenylphosphine oxide allows for the stereoselective cis-glucosylation of primary alcohols. The effectiveness of the strategy is illustrated in the modular synthesis of a Mycobacterium tuberculosis nonasaccharide, composed of an ?-(1-4)-oligoglucose backbone bearing different ?-glucosyl branches.

SUBMITTER: Wang L 

PROVIDER: S-EPMC5890317 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reagent Controlled Stereoselective Synthesis of α-Glucans.

Wang Liming L   Overkleeft Herman S HS   van der Marel Gijsbert A GA   Codée Jeroen D C JDC  

Journal of the American Chemical Society 20180323 13


The development of a general glycosylation method that allows for the stereoselective construction of glycosidic linkages is a tremendous challenge. Because of the differences in steric and electronic properties of the building blocks used, the outcome of a glycosylation reaction can vary greatly when switching form one glycosyl donor-acceptor pair to another. We here report a strategy to install cis-glucosidic linkages in a fully stereoselective fashion that is under direct control of the reage  ...[more]

Similar Datasets

| S-EPMC6470887 | biostudies-other
| S-EPMC1388272 | biostudies-literature
| S-EPMC2852025 | biostudies-literature
| S-EPMC2562328 | biostudies-literature
| S-EPMC6466476 | biostudies-literature
| S-EPMC2631667 | biostudies-literature
| S-EPMC10683368 | biostudies-literature
| S-EPMC8260458 | biostudies-literature
| S-EPMC8179686 | biostudies-literature
| S-EPMC8597041 | biostudies-literature