Unknown

Dataset Information

0

Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides.


ABSTRACT: Various densely charged polycationic species, whether of biological or synthetic origin, can penetrate human cells, albeit with variable efficiencies. The molecular underpinnings involved in such transport remain unclear. Herein, we assemble 1, 2 or 3 copies of the HIV peptide TAT on a synthetic scaffold to generate branched cell-permeable prototypes with increasing charge density. We establish that increasing TAT copies dramatically increases the cell penetration efficiency of the peptides while simultaneously enabling the efficient cytosolic delivery of macromolecular cargos. Cellular entry involves the leaky fusion of late endosomal membranes enriched with the anionic lipid BMP. Derivatives with multiple TAT branches induce the leakage of BMP-containing lipid bilayers, liposomal flocculation, fusion and an increase in lamellarity. In contrast, while the monomeric counterpart 1TAT binds to the same extent and causes liposomal flocculation, 1TAT does not cause leakage, induce fusion or a significant increase in lamellarity. Overall, these results indicate that an increase in charge density of these branched structures leads to the emergence of lipid specific membrane-disrupting and cell-penetrating activities.

SUBMITTER: Brock DJ 

PROVIDER: S-EPMC5948172 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides.

Brock Dakota J DJ   Kustigian Lauren L   Jiang Mengqiu M   Graham Kristin K   Wang Ting-Yi TY   Erazo-Oliveras Alfredo A   Najjar Kristina K   Zhang Junjie J   Rye Hays H   Pellois Jean-Philippe JP  

Traffic (Copenhagen, Denmark) 20180424 6


Various densely charged polycationic species, whether of biological or synthetic origin, can penetrate human cells, albeit with variable efficiencies. The molecular underpinnings involved in such transport remain unclear. Herein, we assemble 1, 2 or 3 copies of the HIV peptide TAT on a synthetic scaffold to generate branched cell-permeable prototypes with increasing charge density. We establish that increasing TAT copies dramatically increases the cell penetration efficiency of the peptides whil  ...[more]

Similar Datasets

| S-EPMC5905407 | biostudies-literature
| S-EPMC8211857 | biostudies-literature
| S-EPMC10635116 | biostudies-literature
| S-EPMC6329960 | biostudies-literature
| S-EPMC4099184 | biostudies-literature
| S-EPMC4485068 | biostudies-literature
| S-EPMC5015074 | biostudies-literature
| S-EPMC3408882 | biostudies-literature
| S-EPMC7195212 | biostudies-literature
| S-EPMC5986714 | biostudies-literature