Unknown

Dataset Information

0

MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3.


ABSTRACT: Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism. Methods: miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1? (IL-1?)-treated primary human chondrocytes (PHCs), and in non-degraded and degraded cartilage. hMSCs and PHCs were transfected with miR-193b-3p or its antisense inhibitor. A direct interaction between miR-193b-3p and its putative binding site in the 3'-untranslated region (3'-UTR) of HDAC3 mRNA was confirmed by performing luciferase reporter assays. Chondrocytes were transfected with miR-193b-3p before performing a chromatin immunoprecipitation assay with an anti-acetylated histone H3 antibody. To investigate miR-193b-3p-transfected PHCs in vivo, they were seeded in tricalcium phosphate-collagen-hyaluronate (TCP-COL-HA) scaffolds, which were then implanted in nude mice. In addition, plasma exosomal miR-193b-3p in samples from normal controls and patients with osteoarthritis (OA) were measured. Results: miR-193b-3p expression was elevated in chondrogenic and hypertrophic hMSCs, while expression was significantly reduced in degraded cartilage compared to non-degraded cartilage. In addition, miR-193b-3p suppressed the activity of reporter constructs containing the 3'-UTR of HDAC3, inhibited HDAC3 expression, and promoted histone H3 acetylation in the COL2A1, AGGRECAN, COMP, and SOX9 promoters. Treatment with the HDAC inhibitor trichostatin A (TSA) increased cartilage-specific gene expression and enhanced hMSCs chondrogenesis. TSA also increased AGGRECAN expression and decreased MMP13 expression in IL-1?-treated PHCs. Further, 8 weeks after implanting PHC-seeded TCP-COL-HA scaffolds subcutaneously in nude mice, we found that miR-193b overexpression strongly enhanced in vivo cartilage formation compared to that found under control conditions. We also found that patients with OA had lower plasma exosomal miR-193b levels than control subjects. Conclusions: These findings indicate that miR-193b-3p directly targets HDAC3, promotes H3 acetylation, and regulates hMSC chondrogenesis and metabolism in PHCs.

SUBMITTER: Meng F 

PROVIDER: S-EPMC5957014 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3.

Meng Fangang F   Li Zhiwen Z   Zhang Zhiqi Z   Yang Zibo Z   Kang Yan Y   Zhao Xiaoyi X   Long Dianbo D   Hu Shu S   Gu Minghui M   He Suiwen S   Wu Peihui P   Chang Zongkun Z   He Aishan A   Liao Weiming W  

Theranostics 20180415 10


Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism. <b>Methods:</b> miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1β (IL-1β)-treated primary human chondrocytes (PHCs), and in non-degraded an  ...[more]

Similar Datasets

| S-EPMC7282190 | biostudies-literature
| S-EPMC7444320 | biostudies-literature
| S-EPMC6756905 | biostudies-literature
| S-EPMC4890642 | biostudies-literature
| S-EPMC7751475 | biostudies-literature
| S-EPMC3403254 | biostudies-other
| S-EPMC5447700 | biostudies-literature
| S-EPMC2861116 | biostudies-literature
| S-EPMC3122940 | biostudies-literature
| S-EPMC6392100 | biostudies-literature