Unknown

Dataset Information

0

Pivotal role of human stearoyl-CoA desaturases (SCD1 and 5) in breast cancer progression: oleic acid-based effect of SCD1 on cell migration and a novel pro-cell survival role for SCD5.


ABSTRACT: The influence of cell membrane fluidity on cancer progression has been established in different solid tumors. We previously reported that "cancer-associated fibroblasts" (CAFs) induced epithelial-mesenchymal transition and increased cell membrane fluidity and migration in poorly (MCF-7) and highly invasive (MDA-MB-231) breast cancer cells. We also found that the membrane fluidity regulating enzyme stearoyl-CoA desaturase 1 (SCD1) was upregulated in tumor cells co-cultured with CAFs and established its essential role for both intrinsic and CAF-driven tumor cell motility. Here, we further explored the mechanisms involved in the SCD1-based modulation of breast cancer cell migration and investigated the role of the other human SCD isoform, SCD5. We showed that the addition of oleic acid, the main SCD1 product, nullified the inhibitory effects produced on MCF-7 and MDA-MB-231 cell migration by SCD1 depletion (pharmacological or siRNA-based). Conversely, SCD5 seemed not involved in the regulation of cancer cell motility. Interestingly, a clear induction of necrosis was observed as a result of the depletion of SCD5 in MCF-7 cells, where the expression of SCD5 was found to be upregulated by CAFs. The necrotic effect was rescued by a 48-h treatment of cells with oleic acid. These results provide further insights in understanding the role of SCD1 in both intrinsic and CAF-stimulated mammary tumor cell migration, unveiling the metabolic basis of this desaturase-triggered effect. Moreover, our data suggest the ability of CAFs to promote the maintenance of tumor cell survival by the induction of SCD5 levels.

SUBMITTER: Angelucci C 

PROVIDER: S-EPMC5966257 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pivotal role of human stearoyl-CoA desaturases (SCD1 and 5) in breast cancer progression: oleic acid-based effect of SCD1 on cell migration and a novel pro-cell survival role for SCD5.

Angelucci Cristiana C   D'Alessio Alessio A   Iacopino Fortunata F   Proietti Gabriella G   Di Leone Alba A   Masetti Riccardo R   Sica Gigliola G  

Oncotarget 20180511 36


The influence of cell membrane fluidity on cancer progression has been established in different solid tumors. We previously reported that "cancer-associated fibroblasts" (CAFs) induced epithelial-mesenchymal transition and increased cell membrane fluidity and migration in poorly (MCF-7) and highly invasive (MDA-MB-231) breast cancer cells. We also found that the membrane fluidity regulating enzyme stearoyl-CoA desaturase 1 (SCD1) was upregulated in tumor cells co-cultured with CAFs and establish  ...[more]

Similar Datasets

| S-EPMC6835877 | biostudies-literature
| S-EPMC8496969 | biostudies-literature
| S-EPMC8533680 | biostudies-literature
| S-EPMC3763774 | biostudies-literature
| S-EPMC2536826 | biostudies-literature
| S-EPMC7053061 | biostudies-literature
| S-EPMC9746202 | biostudies-literature
| S-EPMC2556050 | biostudies-literature
| S-EPMC1464900 | biostudies-other
| S-EPMC2275876 | biostudies-literature