Unknown

Dataset Information

0

Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy.


ABSTRACT: T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer. Poly-chemotherapy with cytotoxic and genotoxic drugs causes substantial toxicity and more specific therapies targeting the underlying molecular lesions are highly desired. Perturbed Ras signaling is prevalent in T-ALL and occurs via oncogenic RAS mutations or through overexpression of the Ras activator RasGRP1 in ~65% of T-ALL patients. Effective small molecule inhibitors for either target do not currently exist. Genetic and biochemical evidence link phosphoinositide 3-kinase (PI3K) signals to T-ALL, PI3Ks are activated by Ras-dependent and Ras-independent mechanisms, and potent PI3K inhibitors exist. Here we performed comprehensive analyses of PI3K-Akt signaling in T-ALL with a focus on class I PI3K. We developed a multiplex, multiparameter flow cytometry platform with pan- and isoform-specific PI3K inhibitors. We find that pan-PI3K and PI3K ?-specific inhibitors effectively block basal and cytokine-induced PI3K-Akt signals. Despite such inhibition, GDC0941 (pan-PI3K) or AS-605240 (PI3K?-specific) as single agents did not efficiently induce death in T-ALL cell lines. Combination of GDC0941 with AS-605240, maximally targeting all p110 isoforms, exhibited potent synergistic activity for clonal T-ALL lines in vitro, which motivated us to perform preclinical trials in mice. In contrast to clonal T-ALL lines, we used a T-ALL cancer model that recapitulates the multi-step pathogenesis and inter- and intra-tumoral genetic heterogeneity, a hallmark of advanced human cancers. We found that the combination of GDC0941 with AS-605240 fails in such trials. Our results reveal that PI3K inhibitors are a promising avenue for molecular therapy in T-ALL, but predict the requirement for methods that can resolve biochemical signals in heterogeneous cell populations so that combination therapy can be designed in a rational manner.

SUBMITTER: Ksionda O 

PROVIDER: S-EPMC5969748 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy.

Ksionda Olga O   Mues Marsilius M   Wandler Anica M AM   Donker Lisa L   Tenhagen Milou M   Jun Jesse J   Ducker Gregory S GS   Matlawska-Wasowska Ksenia K   Shannon Kevin K   Shokat Kevan M KM   Roose Jeroen P JP  

PloS one 20180525 5


T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer. Poly-chemotherapy with cytotoxic and genotoxic drugs causes substantial toxicity and more specific therapies targeting the underlying molecular lesions are highly desired. Perturbed Ras signaling is prevalent in T-ALL and occurs via oncogenic RAS mutations or through overexpression of the Ras activator RasGRP1 in ~65% of T-ALL patients. Effective small molecule inhibitors for either target do not currently exist. Ge  ...[more]

Similar Datasets

| S-EPMC9871280 | biostudies-literature
| S-EPMC2787092 | biostudies-literature
| S-EPMC4333682 | biostudies-literature
| S-EPMC317081 | biostudies-literature
| S-EPMC2840099 | biostudies-literature
| S-EPMC2396754 | biostudies-literature
| S-EPMC3029688 | biostudies-literature
| S-EPMC3623641 | biostudies-literature
| S-EPMC1409730 | biostudies-literature
| S-EPMC3198385 | biostudies-literature