Unknown

Dataset Information

0

Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks.


ABSTRACT:

Background

Human induced pluripotent stem (iPS) cells have revolutionised research and spark hopes for future tissue replacement therapies. To obtain high cell numbers, iPS cells can be expanded indefinitely. However, as long-term expansion can compromise cell integrity and quality, we set out to assess potential reduction of clonal diversity by inherent growth imbalances.

Methods

Using red, green, blue marking as a lentiviral multi-colour clonal cell tracking technology, we marked three different iPS cell lines as well as three other cell lines, assigning a unique fluorescent colour to each cell at one point in culture. Subsequently, we followed the sub-clonal distribution over time by flow cytometry and fluorescence microscopy analysis in regular intervals.

Results

In three human iPS cell lines as well as primary human fibroblasts and two widely used human cell lines as controls (K562 and HEK 293 T), we observed a marked reduction in sub-clonal diversity over time of culture (weeks). After 38 passages, all iPS cultures consisted of less than 10 residual clones. Karyotype and function, the latter assessed by cardiomyocyte differentiation and tissue engineering, did not reveal obvious differences.

Conclusions

Our results argue for a quick selection of sub-clones with a growth advantage and flag a normally invisible and potentially undesired behaviour of cultured iPS cells, especially when using long-term cultured iPS cells for experiments or even in-vivo applications.

SUBMITTER: Breniere-Letuffe D 

PROVIDER: S-EPMC6006556 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks.

Brenière-Letuffe David D   Domke-Shibamiya Aya A   Hansen Arne A   Eschenhagen Thomas T   Fehse Boris B   Riecken Kristoffer K   Stenzig Justus J  

Stem cell research & therapy 20180618 1


<h4>Background</h4>Human induced pluripotent stem (iPS) cells have revolutionised research and spark hopes for future tissue replacement therapies. To obtain high cell numbers, iPS cells can be expanded indefinitely. However, as long-term expansion can compromise cell integrity and quality, we set out to assess potential reduction of clonal diversity by inherent growth imbalances.<h4>Methods</h4>Using red, green, blue marking as a lentiviral multi-colour clonal cell tracking technology, we marke  ...[more]

Similar Datasets

| S-EPMC3822923 | biostudies-literature
| S-EPMC3175064 | biostudies-literature
| S-EPMC9684138 | biostudies-literature
| S-EPMC8007611 | biostudies-literature
| S-EPMC3497769 | biostudies-literature
| S-EPMC7729169 | biostudies-literature
| S-EPMC5841865 | biostudies-other
| S-EPMC3613421 | biostudies-literature