Calibration of force detection for arbitrarily shaped particles in optical tweezers.
Ontology highlight
ABSTRACT: Force measurement with an optical trap requires calibration of it. With a suitable detector, such as a position-sensitive detector (PSD), it is possible to calibrate the detector so that the force can be measured for arbitrary particles and arbitrary beams without further calibration; such a calibration can be called an "absolute calibration". Here, we present a simple method for the absolute calibration of a PSD. Very often, paired position and force measurements are required, and even if synchronous measurements are possible with the position and force detectors used, knowledge of the force-position curve for the particle in the trap can be highly beneficial. Therefore, we experimentally demonstrate methods for determining the force-position curve with and without synchronous force and position measurements, beyond the Hookean (linear) region of the trap. Unlike the absolute calibration of the force and position detectors, the force-position curve depends on the particle and the trapping beam, and needs to be determined in each individual case. We demonstrate the robustness of our absolute calibration by measuring optical forces on microspheres as commonly trapped in optical tweezers, and other particles such a birefringent vaterite microspheres, red blood cells, and a deformable "blob".
SUBMITTER: Bui AAM
PROVIDER: S-EPMC6050307 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA