Unknown

Dataset Information

0

Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics.


ABSTRACT: The kinetics of arthropod-borne virus (arbovirus) transmission by their vectors have long been recognized as a powerful determinant of arbovirus epidemiology. The time interval between virus acquisition and transmission by the vector, termed extrinsic incubation period (EIP), combines with vector mortality rate and vector competence to determine the proportion of infected vectors that eventually become infectious. However, the dynamic nature of this process, and the amount of natural variation in transmission kinetics among arbovirus strains, are poorly documented empirically and are rarely considered in epidemiological models. Here, we combine newly generated empirical measurements in vivo and outbreak simulations in silico to assess the epidemiological significance of genetic variation in dengue virus (DENV) transmission kinetics by Aedes aegypti mosquitoes. We found significant variation in the dynamics of systemic mosquito infection, a proxy for EIP, among eight field-derived DENV isolates representing the worldwide diversity of recently circulating type 1 strains. Using a stochastic agent-based model to compute time-dependent individual transmission probabilities, we predict that the observed variation in systemic mosquito infection kinetics may drive significant differences in the probability of dengue outbreak and the number of human infections. Our results demonstrate that infection dynamics in mosquitoes vary among wild-type DENV isolates and that this variation potentially affects the risk and magnitude of dengue outbreaks. Our quantitative assessment of DENV genetic variation in transmission kinetics contributes to improve our understanding of heterogeneities in arbovirus epidemiological dynamics.

SUBMITTER: Fontaine A 

PROVIDER: S-EPMC6059494 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics.

Fontaine Albin A   Lequime Sebastian S   Moltini-Conclois Isabelle I   Jiolle Davy D   Leparc-Goffart Isabelle I   Reiner Robert Charles RC   Lambrechts Louis L  

PLoS pathogens 20180713 7


The kinetics of arthropod-borne virus (arbovirus) transmission by their vectors have long been recognized as a powerful determinant of arbovirus epidemiology. The time interval between virus acquisition and transmission by the vector, termed extrinsic incubation period (EIP), combines with vector mortality rate and vector competence to determine the proportion of infected vectors that eventually become infectious. However, the dynamic nature of this process, and the amount of natural variation i  ...[more]

Similar Datasets

| S-EPMC4556638 | biostudies-literature
| S-EPMC6397594 | biostudies-literature
| S-EPMC3310792 | biostudies-literature
| S-EPMC4139442 | biostudies-literature
| S-EPMC5521830 | biostudies-literature
2022-07-06 | GSE207347 | GEO
| S-EPMC8001906 | biostudies-literature
| S-EPMC4556672 | biostudies-literature
| S-EPMC6731059 | biostudies-other
2019-08-30 | GSE119036 | GEO