Unknown

Dataset Information

0

Effect of Noncanonical Amino Acids on Protein-Carbohydrate Interactions: Structure, Dynamics, and Carbohydrate Affinity of a Lectin Engineered with Fluorinated Tryptophan Analogs.


ABSTRACT: Protein-carbohydrate interactions play crucial roles in biology. Understanding and modifying these interactions is of major interest for fighting many diseases. We took a synthetic biology approach and incorporated noncanonical amino acids into a bacterial lectin to modulate its interactions with carbohydrates. We focused on tryptophan, which is prevalent in carbohydrate binding sites. The exchange of the tryptophan residues with analogs fluorinated at different positions resulted in three distinctly fluorinated variants of the lectin from Ralstonia solanacearum. We observed differences in stability and affinity toward fucosylated glycans and rationalized them by X-ray and modeling studies. While fluorination decreased the aromaticity of the indole ring and, therefore, the strength of carbohydrate-aromatic interactions, additional weak hydrogen bonds were formed between fluorine and the ligand hydroxyl groups. Our approach opens new possibilities to engineer carbohydrate receptors.

SUBMITTER: Tobola F 

PROVIDER: S-EPMC6102642 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of Noncanonical Amino Acids on Protein-Carbohydrate Interactions: Structure, Dynamics, and Carbohydrate Affinity of a Lectin Engineered with Fluorinated Tryptophan Analogs.

Tobola Felix F   Lelimousin Mickael M   Varrot Annabelle A   Gillon Emilie E   Darnhofer Barbara B   Blixt Ola O   Birner-Gruenberger Ruth R   Imberty Anne A   Wiltschi Birgit B  

ACS chemical biology 20180612 8


Protein-carbohydrate interactions play crucial roles in biology. Understanding and modifying these interactions is of major interest for fighting many diseases. We took a synthetic biology approach and incorporated noncanonical amino acids into a bacterial lectin to modulate its interactions with carbohydrates. We focused on tryptophan, which is prevalent in carbohydrate binding sites. The exchange of the tryptophan residues with analogs fluorinated at different positions resulted in three disti  ...[more]

Similar Datasets

| S-EPMC6642615 | biostudies-literature
| S-EPMC4959848 | biostudies-literature
| S-EPMC4822594 | biostudies-literature
| S-EPMC6783319 | biostudies-literature
| S-EPMC6426444 | biostudies-literature
| S-EPMC6648964 | biostudies-literature
| S-EPMC3574618 | biostudies-literature
| S-EPMC5549939 | biostudies-literature
| S-EPMC4521051 | biostudies-literature
| S-EPMC5580492 | biostudies-literature