Unknown

Dataset Information

0

Anisotropic organization of circumferential actomyosin characterizes hematopoietic stem cells emergence in the zebrafish.


ABSTRACT: Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior axis, with heterogenous organization of contractile circumferential actomyosin. The biomechanics of the contraction is oscillatory, with unusually long periods in comparison to other apical constriction mechanisms described so far in morphogenesis, and is supported by the anisotropic reinforcement of junctional contacts. Finally, we show that abrogation of blood flow impairs the actin cytoskeleton, the morphodynamics of EHT cells, and the orientation of the emergence. Overall, our results underline the peculiarities of the EHT biomechanics and the influence of the mechanical forces exerted by blood flow.

SUBMITTER: Lancino M 

PROVIDER: S-EPMC6105311 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anisotropic organization of circumferential actomyosin characterizes hematopoietic stem cells emergence in the zebrafish.

Lancino Mylene M   Majello Sara S   Herbert Sebastien S   De Chaumont Fabrice F   Tinevez Jean-Yves JY   Olivo-Marin Jean-Christophe JC   Herbomel Philippe P   Schmidt Anne A  

eLife 20180822


Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior a  ...[more]

Similar Datasets

| S-EPMC5090218 | biostudies-literature
| S-EPMC3210643 | biostudies-other
| S-EPMC3198159 | biostudies-literature
| S-EPMC6017808 | biostudies-literature
| S-EPMC6341084 | biostudies-other
| S-EPMC6775131 | biostudies-literature
| S-EPMC7262670 | biostudies-literature
| S-EPMC5473062 | biostudies-literature
| S-EPMC4243083 | biostudies-literature