Deficiency in Fpr2 results in reduced numbers of Lin-cKit+Sca1+ myeloid progenitor cells.
Ontology highlight
ABSTRACT: The Lin-c-Kit+ Sca-1+ cell population in the bone marrow (BM) serves as the direct precursor for differentiation of myeloid cells. In this study, we report that deficiency in Fpr2, a G protein-coupled chemoattractant receptor in mice, is associated with reduced BM nucleated cells, including CD31+Ly6C+ (granulocytes and monocytes), CD31-/Ly6Cint (granuloid cells), and CD31-/Ly6Chigh (predominantly monocytes) cells. In particular, the number of Lin-c-Kit+Sca-1+ (LKS) cells was reduced in Fpr2-/- mouse BM. This was supported by observations of the reduced incorporation of intraperitoneally injected bromodeoxyuridine by cells in the c-Kit+ population from Fpr2-/- mouse BM. Purified c-Kit+ cells from Fpr2-/- mice showed reduced expansion when cultured in vitro with stem cell factor (SCF). SCF/c-Kit-mediated phosphorylation of P38, STAT1, Akt (Thr-308), and Akt (Ser-473) was also significantly reduced in c-Kit+ cells from Fpr2-/- mice. Furthermore, Fpr2 agonists enhanced SCF-induced proliferation of c-Kit+ cells. Colony-forming unit assays revealed that CFU-granulocyte-macrophage formation of BM cells from Fpr2-/- mice was significantly reduced. After heat-inactivated bacterial stimulation in the airway, the expansion of c-kit+ Sca-1+ cells in BM and recruitment of Ly6G+ cells to the lungs and CD11b+Ly6C+TNF?+ cells to the spleen of Fpr2-/- mice was significantly reduced. These results demonstrate an important role for Fpr2 in the development of myeloid lineage precursors in mouse BM.
SUBMITTER: Chen K
PROVIDER: S-EPMC6120191 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA