Unknown

Dataset Information

0

Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model.


ABSTRACT: Chemical signaling underlies both temporally phasic and extended activity in the brain. Phasic activity can be monitored by implanted sensors, but chronic recording of such chemical signals has been difficult because the capacity to measure them degrades over time. This degradation has been attributed to tissue damage progressively produced by the sensors and failure of the sensors themselves. We report methods that surmount these problems through the development of sensors having diameters as small as individual neuronal cell bodies (<10?µm). These micro-invasive probes (µIPs) markedly reduced expression of detectable markers of inflammation and tissue damage in a rodent test model. The chronically implanted µIPs provided stable operation in monitoring sub-second fluctuations in stimulation-evoked dopamine in anesthetized rats for over a year. These findings demonstrate that monitoring of chemical activity patterns in the brain over at least year-long periods, long a goal of both basic and clinical neuroscience, is achievable.

SUBMITTER: Schwerdt HN 

PROVIDER: S-EPMC6135761 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model.

Schwerdt Helen N HN   Zhang Elizabeth E   Kim Min Jung MJ   Yoshida Tomoko T   Stanwicks Lauren L   Amemori Satoko S   Dagdeviren Huseyin E HE   Langer Robert R   Cima Michael J MJ   Graybiel Ann M AM  

Communications biology 20180912


Chemical signaling underlies both temporally phasic and extended activity in the brain. Phasic activity can be monitored by implanted sensors, but chronic recording of such chemical signals has been difficult because the capacity to measure them degrades over time. This degradation has been attributed to tissue damage progressively produced by the sensors and failure of the sensors themselves. We report methods that surmount these problems through the development of sensors having diameters as s  ...[more]

Similar Datasets

| S-EPMC2849934 | biostudies-literature
| S-EPMC3526964 | biostudies-other
| S-EPMC10691773 | biostudies-literature
| S-EPMC4328147 | biostudies-literature
| S-EPMC5040720 | biostudies-literature
| S-EPMC5432522 | biostudies-literature
| S-EPMC7505969 | biostudies-literature
| S-EPMC3656766 | biostudies-other
| S-EPMC10416308 | biostudies-literature
| S-EPMC9480490 | biostudies-literature