Unknown

Dataset Information

0

Biodegradable Poly(Amino Ester) with Aromatic Backbone as Efficient Nonviral Gene Delivery Vectors.


ABSTRACT: The development of gene delivery vectors with high efficiency and biocompatibility is one of the critical points of gene therapy. Two biodegradable poly(amino ester)s were synthesized via ring-opening polymerization between low molecular weight (LMW) PEI and diepoxide. The molecular weights of poly(amino ester)s were measured by GPC. Agarose gel retardation assays showed that these materials have good DNA-binding ability and can retard the electrophoretic mobility of plasmid DNA (pDNA) at a weight ratio of 1. The formed polyplexes have proper sizes of around 200 nm and zeta-potential values of about 30-40 mV for cellular uptake. In vitro experiments revealed that polymer P2 gave higher transfection efficiency than PEI 25KDa and Lipofectamine 2000 with less toxicity, especially in 293 cells. Results demonstrate that such a type of degradable poly(amino ester) may serve as a promising non-viral gene vector.

SUBMITTER: Liu Q 

PROVIDER: S-EPMC6154102 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biodegradable Poly(Amino Ester) with Aromatic Backbone as Efficient Nonviral Gene Delivery Vectors.

Liu Qiang Q   Su Rong-Chuan RC   Yi Wen-Jing WJ   Zhao Zhi-Gang ZG  

Molecules (Basel, Switzerland) 20170331 4


The development of gene delivery vectors with high efficiency and biocompatibility is one of the critical points of gene therapy. Two biodegradable poly(amino ester)s were synthesized via ring-opening polymerization between low molecular weight (LMW) PEI and diepoxide. The molecular weights of poly(amino ester)s were measured by GPC. Agarose gel retardation assays showed that these materials have good DNA-binding ability and can retard the electrophoretic mobility of plasmid DNA (pDNA) at a weig  ...[more]

Similar Datasets

| S-EPMC3789527 | biostudies-literature
| S-EPMC7210380 | biostudies-literature
| S-EPMC4180913 | biostudies-literature
| S-EPMC3080021 | biostudies-literature
| S-EPMC470709 | biostudies-literature
| S-EPMC7909559 | biostudies-literature
| S-EPMC3894248 | biostudies-literature
| S-EPMC5803326 | biostudies-literature
| S-EPMC5896755 | biostudies-literature
| S-EPMC3867963 | biostudies-literature