Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma.
Ontology highlight
ABSTRACT: Chondrosarcomas are malignant cartilage tumors showing relative resistance to conventional chemo- and radiotherapy. Previous studies showed that chondrosarcoma cells could be sensitized to chemotherapy by inhibiting the Bcl-2 family members Bcl-2, Bcl-xl and Bcl-w using ABT-737. In this study we explored the specific role of Bcl-2 family members to identify the most important player in chondrosarcoma cell survival and chemo resistance. Immunohistochemistry was performed on tissue microarrays containing 137 conventional chondrosarcomas of different grades. Selective inhibition of Bcl-2 (S55746) or Bcl-xl (WEHI-539 or A-1155463) and the combination with doxorubicin or cisplatin was investigated in a panel of 8 chondrosarcoma cell lines using presto blue viability assays and caspase 3/7 glo apoptosis assays. In addition Bcl-2 and Bcl-xl inhibition was investigated in an orthotopic Swarm Rat Chondrosarcoma (SRC) model. Bcl-2 and Bcl-xl were most abundantly expressed in the primary tumors, and expression increased with increasing histological grade. A subset of chondrosarcoma cell lines was sensitive to selective inhibition of Bcl-xl, and synergy was observed with doxorubicin or cisplatin in 3 out of 8 chondrosarcoma cell lines resulting in apoptosis. Conversely, selective inhibition of Bcl-2 was not effective in chondrosarcoma cell lines and could not sensitize to chemotherapy. In vivo, selective inhibition of Bcl-xl, but not Bcl-2 resulted in a decrease in tumor growth rate, even though no sensitization to doxorubicin was observed. These results suggest that among the Bcl-2 family members, Bcl-xl is most important for chondrosarcoma survival. Further research is needed to validate whether single or combination treatment with chemotherapy will be beneficial for chondrosarcoma patients.
SUBMITTER: de Jong Y
PROVIDER: S-EPMC6155044 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA