Unknown

Dataset Information

0

Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates.


ABSTRACT: Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.

SUBMITTER: Shenkman M 

PROVIDER: S-EPMC6194124 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates.

Shenkman Marina M   Ron Efrat E   Yehuda Rivka R   Benyair Ron R   Khalaila Isam I   Lederkremer Gerardo Z GZ  

Communications biology 20181018


Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free olig  ...[more]

Similar Datasets

| S-EPMC6130956 | biostudies-literature
| S-EPMC4294666 | biostudies-literature
| S-EPMC1299261 | biostudies-other
| S-EPMC1137856 | biostudies-other
| S-EPMC4121980 | biostudies-literature
| S-EPMC3204057 | biostudies-literature
| S-EPMC8455867 | biostudies-literature
| S-EPMC5721452 | biostudies-literature
| S-EPMC5601426 | biostudies-literature
| S-EPMC7039678 | biostudies-literature