Unknown

Dataset Information

0

Comprehensive Cross-Linking Mass Spectrometry Reveals Parallel Orientation and Flexible Conformations of Plant HOP2-MND1.


ABSTRACT: The HOP2-MND1 heterodimer is essential for meiotic homologous recombination in plants and other eukaryotes and promotes the repair of DNA double-strand breaks. We investigated the conformational flexibility of HOP2-MND1, important for understanding the mechanistic details of the heterodimer, with chemical cross-linking in combination with mass spectrometry (XL-MS). The final XL-MS workflow encompassed the use of complementary cross-linkers, quenching, digestion, size exclusion enrichment, and HCD-based LC-MS/MS detection prior to data evaluation. We applied two different homobifunctional amine-reactive cross-linkers (DSS and BS(2)G) and one zero-length heterobifunctional cross-linker (EDC). Cross-linked peptides of four biological replicates were analyzed prior to 3D structure prediction by protein threading and protein-protein docking for cross-link-guided molecular modeling. Miniaturization of the size-exclusion enrichment step reduced the required starting material, led to a high amount of cross-linked peptides, and allowed the analysis of replicates. The major interaction site of HOP2-MND1 was identified in the central coiled-coil domains, and an open colinear parallel arrangement of HOP2 and MND1 within the complex was predicted. Moreover, flexibility of the C-terminal capping helices of both complex partners was observed, suggesting the coexistence of a closed complex conformation in solution.

SUBMITTER: Rampler E 

PROVIDER: S-EPMC6207341 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comprehensive Cross-Linking Mass Spectrometry Reveals Parallel Orientation and Flexible Conformations of Plant HOP2-MND1.

Rampler Evelyn E   Stranzl Thomas T   Orban-Nemeth Zsuzsanna Z   Hollenstein David Maria DM   Hudecz Otto O   Schlögelhofer Peter P   Mechtler Karl K  

Journal of proteome research 20151118 12


The HOP2-MND1 heterodimer is essential for meiotic homologous recombination in plants and other eukaryotes and promotes the repair of DNA double-strand breaks. We investigated the conformational flexibility of HOP2-MND1, important for understanding the mechanistic details of the heterodimer, with chemical cross-linking in combination with mass spectrometry (XL-MS). The final XL-MS workflow encompassed the use of complementary cross-linkers, quenching, digestion, size exclusion enrichment, and HC  ...[more]

Similar Datasets

2015-11-05 | PXD001538 | Pride
| S-EPMC4279451 | biostudies-literature
| S-EPMC2998617 | biostudies-literature
| S-EPMC1446936 | biostudies-literature
| S-EPMC3902922 | biostudies-literature
| S-EPMC6677244 | biostudies-literature
| S-EPMC4402518 | biostudies-literature
| S-EPMC10105775 | biostudies-literature
| S-EPMC2014788 | biostudies-literature
| S-EPMC3691076 | biostudies-literature