First-principles Investigations of Magnetic Semiconductors: An example of Transition Metal Decorated Two-dimensional SnS Monolayer.
Ontology highlight
ABSTRACT: The absence of magnetic moments in pristine two-dimensional (2D) semiconducting materials has attracted many research interests. Transition-metal (TM) decoration has been found to be an effective strategy to introduce magnetic moments in non-magnetic 2D semiconductors. However, the stability of TM atoms modified 2D semiconductors has not been well explored. Here, taking 2D Tin (II) sulfide (SnS) monolayer as a prototype, we explored the stability of magnetic semiconductors through this method. In our studies, all possible configurations of TM decoration have been considered, namely, adsorption on the intact surface, S vacancy, and Sn vacancy. Based on the energy gain and electronic analysis, our results revealed that most of the TM atoms will form a cluster, and only several TM atoms can be effectively doped into the SnS monolayer. Furthermore, the band calculations showed that only Mn substitution will give rise to a magnetic semiconductor. Thus, the reported results here provide some hidden information for further realization of the magnetic semiconductors and serve as a paradigm to prepare 2D magnetic semiconductors.
SUBMITTER: Wang F
PROVIDER: S-EPMC6215100 | biostudies-literature | 2018 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA