Unknown

Dataset Information

0

Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins.


ABSTRACT: Silicateins play a key role in biosynthesis of spicules in marine sponges; they are also capable to catalyze formation of amorphous silica in vitro. Silicateins are highly homologous to cathepsins L - a family of cysteine proteases. Molecular mechanisms of silicatein activity remain controversial. Here site-directed mutagenesis was used to clarify significance of selected residues in silica polymerization. A number of mutations were introduced into two sponge proteins - silicatein A1 and cathepsin L from Latrunculia oparinae, as well as into human cathepsin L. First direction was alanine scanning of the proposed catalytic residues. Also, reciprocal mutations were introduced at selected positions that differ between cathepsins L and silicateins. Surprisingly, all the wild type and mutant proteins were capable to catalyze amorphous silica formation with a water-soluble silica precursor tetra(glycerol)orthosilicate. Some mutants possessed several-fold enhanced silica-forming activity and can potentially be useful for nanomaterial synthesis applications. Our findings contradict to the previously suggested mechanisms of silicatein action via a catalytic triad analogous to that in cathepsins L. Instead, a surface-templated biosilification by silicateins and related proteins can be proposed.

SUBMITTER: Povarova NV 

PROVIDER: S-EPMC6233156 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins.

Povarova Natalia V NV   Barinov Nikolay A NA   Baranov Mikhail S MS   Markina Nadezhda M NM   Varizhuk Anna M AM   Pozmogova Galina E GE   Klinov Dmitry V DV   Kozhemyako Valery B VB   Lukyanov Konstantin A KA  

Scientific reports 20181113 1


Silicateins play a key role in biosynthesis of spicules in marine sponges; they are also capable to catalyze formation of amorphous silica in vitro. Silicateins are highly homologous to cathepsins L - a family of cysteine proteases. Molecular mechanisms of silicatein activity remain controversial. Here site-directed mutagenesis was used to clarify significance of selected residues in silica polymerization. A number of mutations were introduced into two sponge proteins - silicatein A1 and catheps  ...[more]

Similar Datasets

| S-EPMC3326524 | biostudies-literature
| S-EPMC27641 | biostudies-literature
| S-EPMC9366981 | biostudies-literature
| S-EPMC3896229 | biostudies-literature
| S-EPMC6044564 | biostudies-literature
| S-EPMC10453619 | biostudies-literature
| S-EPMC4626865 | biostudies-literature
| S-EPMC3616864 | biostudies-other
| S-EPMC4767651 | biostudies-literature
| S-EPMC6208650 | biostudies-literature