Unknown

Dataset Information

0

Influence of 13C Isotopic Labeling Location on Dynamic Nuclear Polarization of Acetate.


ABSTRACT: Dynamic nuclear polarization (DNP) via the dissolution method has alleviated the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy by amplifying the signals by several thousand-fold. This NMR signal amplification process emanates from the microwave-mediated transfer of high electron spin alignment to the nuclear spins at high magnetic field and cryogenic temperature. Since the interplay between the electrons and nuclei is crucial, the chemical composition of a DNP sample such as the type of free radical used, glassing solvents, or the nature of the target nuclei can significantly affect the NMR signal enhancement levels that can be attained with DNP. Herein, we have investigated the influence of 13C isotopic labeling location on the DNP of a model 13C compound, sodium acetate, at 3.35 T and 1.4 K using the narrow electron spin resonance (ESR) line width free radical trityl OX063. Our results show that the carboxyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl 13C group, while proven beneficial in the liquid-state, did not produce an improvement in the 13C polarization level at cryogenic conditions. In fact, a slight reduction of the solid-state 13C polarization was observed when 2H spins are present in the methyl group. Furthermore, our data reveal that there is a close correlation between the solid-state 13C T1 relaxation times of these samples and the relative 13C polarization levels. The overall results suggest the achievable solid-state polarization of 13C acetate is directly affected by the location of the 13C isotopic labeling via the possible interplay of nuclear relaxation leakage factor and cross-talks between nuclear Zeeman reservoirs in DNP.

SUBMITTER: Niedbalski P 

PROVIDER: S-EPMC6260835 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Influence of <sup>13</sup>C Isotopic Labeling Location on Dynamic Nuclear Polarization of Acetate.

Niedbalski Peter P   Parish Christopher C   Kiswandhi Andhika A   Kovacs Zoltan Z   Lumata Lloyd L  

The journal of physical chemistry. A 20170424 17


Dynamic nuclear polarization (DNP) via the dissolution method has alleviated the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy by amplifying the signals by several thousand-fold. This NMR signal amplification process emanates from the microwave-mediated transfer of high electron spin alignment to the nuclear spins at high magnetic field and cryogenic temperature. Since the interplay between the electrons and nuclei is crucial, the chemical composition of a D  ...[more]

Similar Datasets

| S-EPMC3681295 | biostudies-literature
| S-EPMC6361393 | biostudies-literature
| S-EPMC3605040 | biostudies-literature
| S-EPMC3660528 | biostudies-literature
| S-EPMC6876865 | biostudies-literature
| S-EPMC5793213 | biostudies-literature
| S-EPMC4656247 | biostudies-literature
| S-EPMC2861560 | biostudies-literature
| S-EPMC5193475 | biostudies-literature
| S-EPMC6287890 | biostudies-literature