Unknown

Dataset Information

0

SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4.


ABSTRACT: We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.

SUBMITTER: Tzelepis K 

PROVIDER: S-EPMC6300607 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4.

Tzelepis Konstantinos K   De Braekeleer Etienne E   Aspris Demetrios D   Barbieri Isaia I   Vijayabaskar M S MS   Liu Wen-Hsin WH   Gozdecka Malgorzata M   Metzakopian Emmanouil E   Toop Hamish D HD   Dudek Monika M   Robson Samuel C SC   Hermida-Prado Francisco F   Yang Yu Hsuen YH   Babaei-Jadidi Roya R   Garyfallos Dimitrios A DA   Ponstingl Hannes H   Dias Joao M L JML   Gallipoli Paolo P   Seiler Michael M   Buonamici Silvia S   Vick Binje B   Bannister Andrew J AJ   Rad Roland R   Prinjha Rab K RK   Marioni John C JC   Huntly Brian B   Batson Jennifer J   Morris Jonathan C JC   Pina Cristina C   Bradley Allan A   Jeremias Irmela I   Bates David O DO   Yusa Kosuke K   Kouzarides Tony T   Vassiliou George S GS  

Nature communications 20181219 1


We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focu  ...[more]

Similar Datasets

| S-EPMC4480521 | biostudies-literature
| S-EPMC4815718 | biostudies-literature
| S-EPMC3918873 | biostudies-literature
| S-EPMC5436079 | biostudies-literature
| S-EPMC8007156 | biostudies-literature
| S-EPMC3932921 | biostudies-literature
| S-EPMC5550326 | biostudies-other
| S-EPMC9206820 | biostudies-literature
| S-EPMC4729186 | biostudies-literature
| S-EPMC3980839 | biostudies-other