Cytokine Thresholds in Gingival Crevicular Fluid with Potential Diagnosis of Chronic Periodontitis Differentiating by Smoking Status.
Ontology highlight
ABSTRACT: The objective of the present study was to determine cytokine thresholds derived from predictive models for the diagnosis of chronic periodontitis, differentiating by smoking status. Seventy-five periodontally healthy controls and 75 subjects affected by chronic periodontitis were recruited. Sixteen mediators were measured in gingival crevicular fluid (GCF) using multiplexed bead immunoassays. The models were obtained using binary logistic regression, distinguishing between non-smokers and smokers. The area under the curve (AUC) and numerous classification measures were obtained. Model curves were constructed graphically and the cytokine thresholds calculated for the values of maximum accuracy (ACC). There were three cytokine-based models and three cytokine ratio-based models, which presented with a bias-corrected AUC?>?0.91 and?>?0.83, respectively. These models were (cytokine thresholds in pg/ml for the median ACC using bootstrapping for smokers and non-smokers): IL1alpha (46099 and 65644); IL1beta (4732 and 5827); IL17A (11.03 and 17.13); IL1alpha/IL2 (4210 and 7118); IL1beta/IL2 (260 and 628); and IL17A/IL2 (0.810 and 1.919). IL1alpha, IL1beta and IL17A, and their ratios with IL2, are excellent diagnostic biomarkers in GCF for distinguishing periodontitis patients from periodontally healthy individuals. Cytokine thresholds in GCF with diagnostic potential are defined, showing that smokers have lower threshold values than non-smokers.
SUBMITTER: Arias-Bujanda N
PROVIDER: S-EPMC6301951 | biostudies-literature | 2018 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA