Chemical Control of a CRISPR-Cas9 Acetyltransferase.
Ontology highlight
ABSTRACT: Lysine acetyltransferases (KATs) play a critical role in the regulation of transcription and other genomic functions. However, a persistent challenge is the development of assays capable of defining KAT activity directly in living cells. Toward this goal, here we report the application of a previously reported dCas9-p300 fusion as a transcriptional reporter of KAT activity. First, we benchmark the activity of dCas9-p300 relative to other dCas9-based transcriptional activators and demonstrate its compatibility with second generation short guide RNA architectures. Next, we repurpose this technology to rapidly identify small molecule inhibitors of acetylation-dependent gene expression. These studies validate a recently reported p300 inhibitor chemotype and reveal a role for p300s bromodomain in dCas9-p300-mediated transcriptional activation. Comparison with other CRISPR-Cas9 transcriptional activators highlights the inherent ligand tunable nature of dCas9-p300 fusions, suggesting new opportunities for orthogonal gene expression control. Overall, our studies highlight dCas9-p300 as a powerful tool for studying gene expression mechanisms in which acetylation plays a causal role and provide a foundation for future applications requiring spatiotemporal control over acetylation at specific genomic loci.
SUBMITTER: Shrimp JH
PROVIDER: S-EPMC6320253 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA